注塑工艺参数的优化选择模板
第5章注塑工艺参数的优化选择
注塑工艺参数包括模具温度、熔体温度、注射压力、保压压力、注射时间等[66]。
前面的注塑成型过程分析比较都是在统一的注塑工艺参数下进行的, 没有考虑到注塑工艺参数对注塑成型过程的影响。
即使浇注系统保持不变, 流动过程也会随着注射时间、熔温和模温等注塑工艺参数的变化而发生变化。
为确保流动过程的合理性, 就需要考虑注塑工艺参数的影响。
在注塑成型过程中, 注塑成型工艺参数如熔体温度、模具温度、注射压力、保压压力、注射时间和保压时间等都会对塑件注塑成型后的成型周期、塑件质量、体积收缩率等有着很大的影响。
其中塑料熔体温度和模具温度对注塑过程的影响特别显著, 塑料熔体温度和模具温度的变化会直接影响到熔体在型腔内的流动情况。
如果塑料熔体温度升高, 流动速率可能会增加, 这样就有利于充模; 可是如果塑料熔体温度过高就可能会引起塑件烧焦甚至材料降解[67]。
模具温度变化也会直接影响制品的生产效率和质量, 如果模温过高可能会延长塑件注塑成型周期, 就会降低生产效率; 如果模温过低就可能会发生熔体滞留, 造成欠注和熔接痕等缺陷[68]。
在传统的塑件注塑成型中, 注塑工艺参数的确定一般需要经过多次试模, 而经过Moldflow的模拟分析就能够一次性确定注塑工艺参数。
Moldflow中的注塑工艺参数优化包括两种方法, 一种是在DOE模块进行优化分析, 一种是在流动分析模块进行优化分
析。
DOE模块的优化分析主要是对塑料熔体温度和模具温度进行优化分析, 可是不能够对其它的注塑工艺参数进行优化分析, 这个也是当前软件在DOE模块开发方面的限制, 有待科技的进一步发展。
DOE模块的优化分析是根据设置的变量情况, 软件自动运用类似正交实验的方法来分析塑料熔体温度和模具温度对塑件各方面的影响情况, 然后经过对模拟结果的分析比较来确定塑料熔体温度和模具温度。
流动分析的优化方法是在流动分析模块对注塑工艺参数如保压压力、注塑速率等进行优化选择的方法。
这种方法经过对被注塑工艺参数影响较大的流动过程描述量如充填时间、体积收缩率、残余应力和锁模力等的比较分析来确定优化的注塑工艺参数。
下面将经过这两种方法来对注塑工艺参数进行优化分析。
5.1 DOE模块的熔体温度和模具温度优化选择
下面将经过对重要描述量如循环时间、体积收缩率、注射压力等进行分析来优化选择熔体温度和模具温度。
5.1.1 DOE( 流动) 实验设置
材料推荐的熔体温度为255℃, 模具温度65℃为中间值, 熔体温度范围在235℃-275℃之间, 模具温度范围在45℃-85℃之间; 以5℃变化来设置, 这样产生9组水平( 数值) , 设为1-9; 设熔体温度为因子A, 模具温度为因子B。
设置如表5-1参量, 然后在软件中根据表中数据进行实验设置。
表5-1 数据设置
5.1.2 熔体温度查看分析结果
熔体温度是熔体注塑时的温度, 熔体温度是重要的注塑工艺参数之一。
下面将分析熔体温度的变化对循环时间、体积收缩率、注射压力和制品质量四个量的影响。
(1) 循环时间
循环时间指注塑成型周期, 主要包括充填时间、保压时间、冷却时间等。
循环时间能够看出注塑效率, 循环时间越短则注塑效率越高, 企业生产效益就越好[69]。
下面将分析熔体温度变化对循环时间的影响。
图5-1 随熔体温度变化的循环时间
从图5-1能够看出, 随着熔体温度的增加, 循环时间先减小, 当熔体温度到达某个点时, 循环时间最小, 然后随着熔体温度的升高, 循环时间也变大。
从图表看出, 当熔体温度在258℃时循环时间最小, 此时注塑周期最短, 生产效率最高。
因此从熔体温度角度来说, 选择258℃熔体温度。
(2) 体积收缩率
体积收缩率指塑件固化收缩时体积的变化率。
体积收缩率越小, 则塑件的变形会越好, 塑件质量会越好。
下面将分析熔体温度的变化对体积收缩率的影响。
图5-2 随熔体温度变化的体积收缩率
从图5-2能够看出, 随着熔体温度的增加体积收缩率也变大, 熔体温度增加到某点时体积收缩率最大, 然后随着熔体温度的增加, 体积收缩率又变小。
从图表看出, 当熔体温度在255℃时体积收缩率最大, 熔体温度在235℃时体积收缩率最小。
熔体温度235℃时体积收缩率最小, 此时塑件变形会最小, 塑件质量最好。
因此从体积收缩率角度来说, 选择235℃作为熔体温度。
(3) 注射压力
注射压力是注塑时注塑机对型腔施加的压力。
注射压力是由液压压力提供的, 注射压力越小则所需的液压压力就越小, 越能节省能量[70]。
图5-3 随熔体温度变化的注射压力
从图5-3能够看出熔体温度变化时注射压力的变化情况。
从图表中看出, 随着熔体温度的增加, 注射压力基本成直线变小, 在熔体温度为275℃时, 注射压力最小。
在注射压力最小时, 注塑机所施加的液压压力最小, 所需的能量最小, 最能提高企业效益。
因此, 从注射压力角度来说, 选择熔体温度为275℃。
(4) 制品质量
制品质量是软件根据分析情况对塑件作的综合质量评价。
制品质量评价指数越高, 制品就越好[71]。
制品质量随熔体温度的变化情况如图5-4所示。
图5-4 随熔体温度变化的制品质量。