任务书一、设计内容要求设计一35KV变电所的电气部分二、原始资料1、某企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。
2、距本变电所7Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1080MVA 。
3、待设计的变电所10KV无电源。
4、本变电所10KV母线到各个车间(共有8个车间)均用电缆供电,其中一车间和二车间为一类负荷,其余为三类负荷,Tmax=400h ,各馈线负荷如表1—1(表1—1)5、所用电的主要负荷见表1—2(表1—2)6、环境条件(1)当地最热月平均最高温度29.9°c,极端最低温度-5.9°c,最热月地面0.8m处土壤平均26.7°c ,电缆出线净距100mm。
(2)当地海拔高度507.4m。
雷暴日数36.9日/年:无空气污染,变电所地处在P≤500m·Ω的黄土上。
三、设计任务1 、设计本变电所的主电路,论证设计方案是最佳方案,选择主变压器的容量和台数;2 、设计本变电所的自用电路,选择自用变压器的容量和台数;3 、计算短路电流;4、选择导体及电气设备。
四、设计成果1 、设计说明书和计算书各一份2 、主电路图一份五、主要参考资料1、水利电力部西北电力设计院编。
电力工程电气设计手册(第一册)。
北京:中国水利电力出版社。
1989.122、周问俊主编。
电气设备实用手册。
北京:中国水利水电出版社,19993、陈化钢主编。
企业供配电。
北京:中国水利水电出版社,2003.94、电力专业相关教材和其它相关电气手册和规定1电气主接线设计方案1.1电气主接线概述为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。
把变电站、断路器等按预期生产流程连成的电路,称为电气主接线。
电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。
用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装备的全部基本组成和连接关系的单线接线图,称为主接线电路图。
主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。
它表明了变压器,线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。
它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。
由于电能生产的特点是发电、变电、输电和用户是在同一时刻完成的,所以主接线的设计是一个综合性的问题。
必须全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。
1.2 主接线的设计原则电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。
1、负荷大小的重要性2、系统备用容量大小(1)运行备用容量不宜少于8-10%,以适应负荷突变,机组检修和事故停运等情况的调频需要。
(2)装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%—70%的全部负荷,在计及过负荷能力后的允许时间内,应保证车间的一、二级负荷供电。
1.3 主接线设计的基本要求电气主接线设计应满足可靠性、灵活性、经济性三项基本要求,其具体要求如下:1、可靠性其具体要求如下:(1)断路器检修时不应影响供电。
系统有重要负荷,应能保证安全、可靠的供电。
(2)断路器或母线故障以及母线检修时,尽量减少停运出线回数及停电时间,并且要保证全部一级负荷和部分二级负荷的供电。
(3)尽量避免发电厂、变电所全部停运的可能性。
防止系统因为某设备出现故障而导致系统解裂。
(4)大机组超高压电气主接线应满足可靠性的特殊要求。
2、灵活性主接线应满足在调度、检修及扩建时的灵活要求。
从系统的长远规划来设计,应满足灵活性要求。
(1)调度时应该可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式以及特殊运行方式以及特殊运行方式下的系统调度要求。
(2)检修时可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对车间的供电。
(3)扩建时可以容易地从初期接线过渡到最终接线。
在不影响连续供电或停运时间最短的情况下,投入新装机组,变压器或线路而不互相干扰,并且对一次和二次部分的改建工作最少。
3、经济性主接线满足可靠性,灵活性要求的前提下做到经济合理。
(1)主接线应力求简单,节省断路器、隔离开关、电流和电压互感器等一次设备。
(2)要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。
(3)要能限制短路电流,以便于选择价廉的电气设备或轻型电器。
(4)如能满足系统的安全运行及继电保护要求,35kV及其以下终端或分支变电所可采用简易电器。
(5)占地面积少:主接线设计要为配电装置布置创造条件,尽量使占地面积减少。
(6)电能损失少:经济合理地选择主变压器的种类(双绕组、三绕组或自耦变压器)、容量、数量,要避免因两次变压而增加的电能损失。
1.4 主接线的设计和论证依据变电站的性质可选择单母线接线、单母线分段接线、双母线接线、外桥型接线、内桥型接线、五种主接线方案,下面逐一论证其接线的利弊。
1.4.1 单母线接线单母线接线的特点是每一回线路均经过一台断路器和隔离开关接于一组母线上。
优点:(1)、接线简单清晰、设备少、操作方便。
(2)、投资少,便于扩建和采用成套配电装置缺点:(1)、可靠性和灵活性较差。
任一元件(母线及母线隔离开关等)故障或检修均需使整个配电装置停电。
(2)、单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需停电,在用隔离开关将故障的母线分开后才能恢复非故障段的供电。
适用范围:单母线接线不能满足对不允许停电的重要用户的供电要求,一般用于6-220kV系统中,出线回路较少,对供电可靠性要求不高的中、小型发电厂与变电站中。
图1 单母线接线1.4.2 单母线分段接线(1)用隔离开关分段的单母线接线这种界限实际上仍属不分段的单母线接线,只是将单母线截成两个分段,其间用分段隔离开关连接起来。
这样做的好处是两段母线可以轮流检修,缩小了检修母线时的停电范围,即检修任一段母线时,只需断开与该段母线连接的引出线和电源回路拉开分段隔离开关,另一段母线仍可继续运行。
但是,若两个电源取并列运行方式,则当某段母线故障时,所有电源开关都将自动跳闸,全部装置仍需短时停电,需待用分段隔离开关将故障的母线段分开后才能恢复非故障母线段的供电。
可见,采用隔离开关分段的单母线接线较之不分段的单母线,可以缩小母线检修或故障时的停电范围。
(2)用断路器分段的单母线接线用隔离开关奋斗的单母线接线,虽然可以缩小母线检修或故障时的停电范围,但当母线故障时,仍会短时全停电,需待分段隔离开关拉开后,才能恢复非故障母线段的运行,这对于重要用户而言是不允许的。
如采用断路器分段的单母线接线,并将重要用户采用分别接于不同母线段的双回路供电,足可以克服上诉缺点。
对用断路器分段的单母线的评价为:优点:①具有单母线接线简单、清晰、方便、经济、安全等优点。
②较之不分段的单母线供电可靠性高,母线或母线隔离开关检修或故障时的停电范围缩小了一半。
与用隔离开关分段的单母线接线相比,母线或母线隔离开关短路时,非故障母线段可以实现完全不停电,而后者则需短时停电。
③运行比较灵活。
分段断路器可以接通运行,也可断开运行。
④可采用双回线路对重要用户供电。
方法是将双回路分别接引在不同分段母线上。
缺点:①任一分段母线或母线隔离开关检修或故障时,连接在该分段母线上的所有进出回路都要停止工作,这对于容量大、出线回路数较多的配电装置仍是严重的缺点。
②检修任一电源或出线断路器时,该回路必须停电。
这对于电压等级高的配电装置也是严要缺点。
因为电压等级高的断路器检修时间较长,对用户影响甚大。
单母线分段接线与单母线接线相比提高了供电可靠性和灵活性。
但是,当电源容量较大、出线数目较多时,其缺点更加明显。
因此,单母线分段接线用于:①电压为6~10KV时,出线回路数为6回及以上,每段母线容量不超过25MW;否则,回路数过多时,影响供电可靠性。
②电压为35~63KV时,出线回路数为4~8回为宜。
③电压为110~220KV时,出线回路数为3~4回为宜。
(3)单母线分段带旁路母线的接线为克服出线断路器检修时该回路必须停电的缺点,可采用增设旁路母线的方法。
当母线回路数不多时,旁路断路器利用率不高,可与分段断路器合用,并有以下两种接线形式。
①分段断路器兼作旁路断路器接线。
②旁路断路器兼作分段断路器接线。
优点:单母分段带旁路接线与单母分段相比,带来的唯一好处就是出线断路器故障或检修时可以用旁路断路器代路送电,使线路不停电。
单母线分段带旁路接线,主要用于电压为6~10KV出线较多而且对重要负荷供电的装置中;35KV及以上有重要联络线路或较多重要用户时也采用。
单母线分段接线,虽然缩小了母线或母线隔离开关检修或故障时的停电范围,在一定程度上提高了供电可靠性,但在母线或母线隔离开关检修期间,连接在该段母线上的所有回路都将长时间停电,这一缺点,对于重要的变电站和用户是不允许的。
图2 单母线分段接线1.4.3 双母线接线优缺点分析:①可靠性高。
可轮流检修母线而不影响正常供电。
当采用一组母线工作、一组母线备用方式运行时,需要检修工作母线,可将工作母线转换为备用状态后,便可进行母线停电检修工作;检修任一母线侧隔离开关时,只影响该回路供电;工作母线发生故障后,所有回路短时停电并能迅速恢复供电;可利用母联断路器代替引出线断路器工作,使引出线断路器检修期间能继续向负荷供电。
②灵活性好。
为了克服上述单母线分段接线的缺点,发展了双母线接线。
按每一回路所连接的断路器数目不同,双母线接线有单断路器双母线接线、双断路器双母线接线、一台半断路器接线(因两个回路共用三台断路器,又称二分之三接线)三种基本形式。
后两种又称双重连接的接线,意即一个回路与两台断路器相连接,在超高压配电装置中被日益广泛地采用。
(1)单断路器双母线接线:单断路器双母线接线器是双母线接线中最基本的接线形式。
它具有两组结构相同的母线,每一回路都经一台断路器、两组隔离开关分别连接到两组母线上,两组母线之间通过母联断路器来实现联络。
双母线接线有两种运行方式,一种运行方式是一组母线工作,一组母线备用,母联断路器在正常运行时是断开的;另一种运行方式是两组母线同时工作,母联断路器在正常运行时是接通的,这时每一回路都固定连接于某一组母线上运行,故亦称固定连接运行方式。