当前位置:文档之家› 基于PLC的自控成型控制系统设计

基于PLC的自控成型控制系统设计

课程设计说明书题目: 基于PLC的自控成型控制系统设计系别:机械工程学院专业班级:机设10-12班学号:2010302618学生姓名:李文龙指导教师:杜菲2014年0 1 月12日安徽理工大学课程设计(论文)任务书机械工程学院测控教研室2014年01月12日安徽理工大学课程设计(论文)成绩评定表摘要随着技术的发展,其控制功能不断增强,可编程程序控制器还可以进行算术运算,模拟量控制、顺序控制、定时、计数等,并通过数字,模拟的输入、输出控制各种类型的机械生产过程。

长期以来,PLC及其网络控制系统始终战斗在工业自动化控制行业的主战场,其提供的安全和完善的解决方案,为各种各样的自动化设备提供了非常可靠的控制应用,在电力、冶金、化工、机械等行业发挥了重大作用,被公认为现代工业自动化三大支柱之一。

在成型机的生产线中应用PLC控制具有结构简单,编程方便,操作灵活,使用安全,工作稳定,性能可靠和抗干扰能力强等特点,是一种很有效的自动控制方式,是材料成型生产实现高效、低成本、高质量自动化生产的发展方向。

不但能使成型的产品的质量和品质得到了严格的保证;而且还大大提高了生产效率和减轻工人的劳动强度,有非常好的经济效益和社会效益。

本文就是利用PLC控制的方法设计的一种即安全又实用的自控成型系统。

自控成型系统主要由工作台、液压缸A、B、C以及相应的电磁阀和信号灯等几部分组成。

该自动成型系统是利用油的压力来传递能量,以实现材料(如:钢筋)加工工艺的要求。

该自动成型系统是利用PLC控制液压缸A、B、C的三个电磁阀有序的打开和关闭,以便使油进入或流出液压缸,从而控制各油缸中活塞有序运动,活塞带动连杆运动,给相应的挡块一个压力,这样就可以使材料成型。

关键词:可编程程序控制器;PLC;液压缸目录第一章绪论 (1)1.1课程设计的背景 (1)1.2课程设计任务 (1)1.3课程设计的意义 (2)第二章PLC简介 (3)2.1 PLC的由来 (3)2.2 PLC的定义 (3)2.3 PLC的构成 (4)2.4 PLC的各组成元素的构成及功能 (4)2.5 PLC工作原理 (6)第三章液压传动系统 (8)3.1液压系统基本回路 (8)3.3液压缸 (8)第四章程序设计 (10)4.1设计思想、程序框图、梯形图 (10)4.2程序设计与说明 (12)4.3I/O地址表分配: (13)4.4指令表 (13)4.5 GX Simulator 仿真模拟 (14)第五章实验调试 (17)5.1运行调试 (17)5.2实验步骤 (17)设计总结 (20)参考文献 (21)第一章绪论1.1课程设计的背景目前,在国内外PLC已广泛应用冶金、石油、化工、建材、机械制造、电力、汽车、轻工、环保及文化娱乐等各行各业,随着PLC性能价格比的不断提高,其应用领域不断扩大。

从应用类型看,PLC的应用大致可归纳为以下几个方面:开关量逻辑控制、运动控制、过程控制、数据处理、通信联网等等。

PLC系统与通用计算机可直接或通过通信处理单元、通信转换单元相连构成网络,以实现信息的交换,并可构成“集中管理、分散控制”的多级分布式控制系统,满足工厂自动化(FA)系统发展的需要。

为适应工业环境使用,与一般控制装置相比较,PLC机有以下特点:可靠性高,抗干扰能力强;通用性强,控制程序可变,使用方便;功能强,适应面广;编程简单,容易掌握;减少了控制系统的设计及施工的工作量;体积小、重量轻、功耗低、维护方便等。

因此我们基于PLC自控成型控制系统的设计,来满足生产上的需要,从而大大提高了生产效率和减轻工人的劳动强度,有非常好的经济效益和社会效益。

1.2课程设计任务一、控制要求利用PLC构成一个自控成型系统,用LED发光管来演示系统工作状态。

其中S1,S6用于指示油缸到位开关;K1至K4用于指示电磁阀的工作状态。

(1)初始状态,当原料放入成型机时,各油缸为初始状态:K1=K2=K4=OFF,K3=ON,S1=S3=S5=OFF,S2=S4=S6=ON。

(2)按下启动键S0,则K2=ON,上面油缸的活塞B向下运动,使S4=OFF。

(3)当该油缸活塞下降到终点时,S3=ON,此时启动左液压缸,A的活塞向右运动,C的活塞向左运行,K1=K4=ON,K3=OFF,使S2=S6=OFF。

(4)当A缸活塞运行到终点时,S1=ON,并且C缸活塞也到终点,S5=ON时,原料已成型,各油缸开始返回原位。

首先,A、C油缸返回,K1=K4=OFF,K3=ON,使S1=S5=OFF。

(5)当A、C油缸返回到初始位置,S2=S6=ON时,B油缸返回,K2=OFF,使S3=OFF。

(6)当B油缸返回到初始状态,S4=ON时,系统回到初始状态,取出成品;放入原料后,按下启动按钮,重新启动,开始下一工件的加工。

二、课题要求(1) 按题意要求,画出PLC 端子接线图及控制梯形图。

(2) 完成PLC 端子接线工作, 并利用编程器输入梯形图控制程序,完成调试。

(3) 完成课程设计说明书。

1.3课程设计的意义通过课程设计的实践,使学生巩固和深化对PLC理论知识的理解;培养学生运用所学PLC知识和技能,配合相关技术资料的查询,独立分析和解决生产实际中有关工业控制实际问题的能力;进一步提高学生对PLC控制系统分析、设计的能力。

通过对PLC自控成型控制系统的设计,使材料成型生产实现高效、低成本、高质量自动化生产的发展方向。

不但能使成型的产品的质量和品质得到了严格的保证;而且还大大提高了生产效率和减轻工人的劳动强度,有非常好的经济效益和社会效益。

本文就是利用PLC控制的方法设计的一种即安全又实用的自控成型系统。

第二章PLC简介2.1 PLC的由来在PLC问世之前,工业控制领域中是继电器控制占主导地位。

继电器控制系统有着十分明显的缺点:体积大、耗电多、可靠性差、寿命短、运行速度慢、适应性差,尤其当生产工艺发生变化时,就必须重新设计、重新安装,造成时间和资金的严重浪费。

为了改变这一现状,1968年美国最大的汽车制造商通用汽车公司(GM),为了适应汽车型号不断更新的要求,以在激烈的竞争的汽车工业中占有优势,提出要研制一种新型的工业控制装置来取代继电器控制装置,为此,特拟定了十项公开招标的技术要求,即:(1)编程简单方便,可在现场修改程序;(2)硬件维护方便,最好是插件式结构;(3)可靠性要高于继电器控制装置;(4)体积小于继电器控制装置;(5)可将数据直接送入管理计算机;(6)成本上可与继电器柜竞争;(7)输入可以是交流115V;(8)输出为交流115V,2A以上,能直接驱动电磁阀;(9)扩展时,原有系统只需做很小的改动;(10)用户程序存储器容量至少可以扩展到4KB。

根据招标要求,1969年美国数字设备公司(DEC)研制出世界上第一台PLC(PDP—14型),并在通用汽车公司自动装配线上试用,获得了成功,从而开创了工业控制新时期。

从此,可编程控制器这一新的控制技术迅速发展起来,而且,在工业发达国家发展很快。

2.2 PLC的定义在PLC的发展过程中,美国电气制造商协会(NEMA)经过4年的调查,于1980年把这种新型的控制器正式命名为可编程序控制器(Programmable Controller),英文缩写为PC,并作如下定义:“可编程序控制器是一种数字式电子装置。

它使用可编程序的存储器来存储指令,并实现逻辑运算、顺序控制、计数、计时和算术运算功能,用来对各种机械或生产过程进行控制。

”国际电工委员会(IEC)曾于1982年11月颁布了可编程序控制器标准的草案第一稿,1985年1月又发表了草案第二稿,1987年2月颁布了草案第三稿。

该草案中对可编程序控制器的定义是:“可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

它采用了可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数、和算术运算等操作的指令。

并通过数字式和模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC及其有关外部设备,都应按易于与工业系统联成一个整体,易于扩充其功能的原则设计。

”定义强调了PLC应直接应用于工业环境,它必须具有很强的抗干扰能力、广泛的适应能力和应用范围。

这是区别于一般微机控制系统的一个重要特征。

2.3 PLC的构成从结构上分,PLC分为固定式和组合式(模块式)两种。

固定式PLC包括CPU板、I/O 板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。

模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。

2.4 PLC的各组成元素的构成及功能CPU.CPU是PLC的核心,起神经中枢的作用,主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。

每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。

进入运行后,从用户程序存储器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。

对使用者来说,不必详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。

CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令,但工作节奏由震荡信号控制。

运算器用于进行数字或逻辑运算,在控制器指挥下工作。

寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。

CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。

I/O模块.PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。

I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。

输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。

I/O种类有开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等。

开关量是指只有开和关(或1和0)两种状态的信号,模拟量是指连续变化的量。

常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

内存.内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

不同机型的PLC期内存大小也不尽相同,除主机单元的已有的内存区外,大部分机型还可根据用户具体需要加以扩展。

相关主题