当前位置:文档之家› 主成分、因子分析步骤

主成分、因子分析步骤

主成分分析、因子分析步骤不同点主成分分析因子分析概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量主要目标减少变量个数,以较少的主成分来解释原有变量间的大部分变异,适合于数据简化找寻变量间的内部相关性及潜在的共同因素,适合做数据结构检测强调重点强调的是解释数据变异的能力,以方差为导向,使方差达到最大强调的是变量之间的相关性,以协方差为导向,关心每个变量与其他变量共同享有部分的大小最终结果应用形成一个或数个总指标变量反映变量间潜在或观察不到的因素变异解释程度它将所有的变量的变异都考虑在内,因而没有误差项只考虑每一题与其他题目共同享有的变异,因而有误差项,叫独特因素是否需要旋转主成分分析作综合指标用,不需要旋转因子分析需要经过旋转才能对因子作命名与解释是否有假设只是对数据作变换,故不需要假设因子分析对资料要求需符合许多假设,如果假设条件不符,则因子分析的结果将受到质疑因子分析1 【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置方法:默认主成分法。

主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。

输出:为旋转的因子图抽取:默认选1.最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。

“输出”框中的“旋转解”。

(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。

(5)选项(Options)对话框设置2 结果分析(1)KMO及Bartlett’s检验KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。

.515Bartlett 的球形度检验近似卡方 3.784df 6Sig. .706当KMO值愈大时,表示变量间的共同因子愈多,愈适合作因子分析。

根据Kaiser的观点,当KMO>0.9(很棒)、KMO>0.8(很好)、KMO>0.7(中等)、KMO>0.6(普通)、KMO>0.5(粗劣)、KMO<0.5(不能接受)。

(2)公因子方差公因子方差起始撷取卫生 1.000 .855饭量 1.000 .846等待时间 1.000 .819味道 1.000 .919亲切 1.000 .608撷取方法:主体元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。

(3)解释的总方差第二列统计的值是各因子的特征值,即各因子能解释的方差,一般的,特征值在1以上就是重要的因子;第三列%是各因子的特征值与所有因子的特征值总和的比,也称因子贡献率;第四列是因子累计贡献率。

如因子1的特征值为2.451,因子2的特征值为1.595,因子3,4,5的特征值在1以下。

因子1的贡献率为49.0%,因子2的贡献率为31.899%,这两个因子贡献率累积达80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。

至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了2个变量,fac1_1、fac2_1,即为因子得分。

(4)成分矩阵与旋转成分矩阵成分矩阵是未旋转前的因子矩阵,从该表中并无法清楚地看出每个变量到底应归属于哪个因子。

旋转后的因子矩阵,从该表中可清楚地看出每个变量到底应归属于哪个因子。

此表显示旋转后原始的所有变量与新生的2个公因子之间的相关程度。

一般的,因子负荷量的绝对值0.4以上,认为是显著的变量,超过0.5时可以说是非常重要的变量。

如味道与饭量关于因子1的负荷量高,所以聚成因子1,称为饮食因子;等待时间、卫生、亲切关于因子2的负荷量高,所以聚成因子2,又可以称为服务因子。

(5)因子得分系数矩阵元件评分系数矩阵元件1 2卫生-.010 .447饭量.425 -.036等待时间-.038 .424。

因子1的分数=-0.010*X1+0.425*X2-0.038*X3+0.408*X4-0.316*X5因子2的分数=0.447*X1-0.036*X2+0.424*X3+0.059*X4-0.371*X5(6)因子转换矩阵元件转换矩阵元件 1 21 .723 -.6912 .691 .723撷取方法:主体元件分析。

转轴方法:具有 Kaiser 正规化的最大变异法。

因子转换矩阵是主成分形式的系数。

(7)因子得分协方差矩阵看各因子间的相关系数,若很小,则因子间基本是两两独立的,说明这样的分类是较合理的。

主成分分析1 【分析】——【降维】——【因子分析】(1)设计分析的统计量【相关性矩阵】中的“系数”:会显示相关系数矩阵;【KMO和Bartlett的球形度检验】:检验原始变量是否适合作主成分分析。

【方法】里选取“主成分”。

【旋转】:选取第一个选项“无”。

【得分】:“保存为变量”【方法】:“回归”;再选中“显示因子得分系数矩阵”。

2 结果分析(1)相关系数矩阵相关性矩阵食品衣着燃料住房交通和通讯娱乐教育文化相关食品 1.000 .692 .319 .760 .738 .556 衣着.692 1.000 -.081 .663 .902 .389 燃料.319 -.081 1.000 -.089 -.061 .267 住房.760 .663 -.089 1.000 .831 .387 交通和通讯.738 .902 -.061 .831 1.000 .326 娱乐教育文化.556 .389 .267 .387 .326 1.000 两两之间的相关系数大小的方阵。

通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。

由表中可知许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。

(2)KMO及Bartlett’s检验KMO 与Bartlett 检定Kaiser-Meyer-Olkin 测量取样适当性。

.602Bartlett 的球形检定大约卡方62.216df 15显著性.000根据Kaiser的观点,当KMO>0.9(很棒)、KMO>0.8(很好)、KMO>0.7(中等)、KMO>0.6(普通)、KMO>0.5(粗劣)、KMO<0.5(不能接受)。

(3)公因子方差Communalities起始擷取食品 1.000 .878衣着 1.000 .825燃料 1.000 .841住房 1.000 .810交通和通讯 1.000 .919娱乐教育文化 1.000 .584擷取方法:主體元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。

80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。

(5)成分矩阵(因子载荷矩阵)元件矩阵a元件1 2食品.902 .255衣着.880 -.224燃料.093 .912住房.878 -.195交通和通讯.925 -.252娱乐教育文化.588 .488撷取方法:主体元件分析。

a. 撷取2 个元件。

该矩阵并不是主成分1和主成分2的系数。

主成分系数的求法:各自主成分载荷向量除以主成分方差的算数平方根。

则第1主成分的各个系数是向量(0.925,0.902,0.880,0.878,0.588,0.093)除以568.3后才得到的,即(0.490,0.478,0.466,0.465,0.311,0.049)才是主成分1的特征向量。

第1主成分的函数表达式:Y1=0.490*Z交+0.478*Z食+0.466*Z衣+0.465*Z住+0.311*Z娱+0.049*Z燃(6)因子得分因子得分显示在SPSS的数据窗口里。

通过因子得分计算主成分得分。

(7)主成分得分主成分的得分是相应的因子得分乘以相应方差的算数平方根。

即:主成分1得分=因子1得分乘以3.568的算数平方根主成分2得分=因子2得分乘以1.288的算数平方根【转换】—【计算变量】(8)综合得分及排序综合得分是按照下列公式计算:综合得分Y为:【数据】——【排序个案】。

相关主题