1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变6、甲、乙两名溜冰运动员,M 甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ 即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
(一)运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。
为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度( )等物理量,涉及的物理量及公式较多。
因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。
1. 基本概念、公式的理解和运用[例1] 关于匀速圆周运动,下列说法正确的是()A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。
[例2] 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
2. 传动带传动问题[例3] 如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。
求:(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。
[例4] 如图3所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比。
对A 球:OA L m F F 221ω=- ①对B 球:OB L m F 22ω= ②① 两式联立解得2321=F F [例5] 如图4所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是( )A. 球A 的线速度必定大于球B 的线速度B. 球A 的角速度必定小于球B 的角速度C. 球A 的运动周期必定小于球B 的运动周期D. 球A 对筒壁的压力必定大于球B 对筒壁的压力3. 联系实际问题[例7] 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)解析:设汽车质量为m ,车轮与地面的动摩擦因数为μ,刹车时车速为0v ,此时车离墙距离为0s ,为方便起见,设车是沿墙底线的中垂线运动。
若司机采用刹车,车向前滑行的距离设为s ,则==g v s μ220常数,若司机采取急转弯法,则Rv m mg 20=μ(R 是最小转弯半径),s g v R 220==μ。
讨论:(1)若R s >0,则急刹车或急转弯均可以;(2)若s s R >>0,则急刹车会平安无事,汽车能否急转弯与墙的长度和位置有关,如图6所示,质点P 表示汽车,AB 表示墙,若墙长度R l 2<,如图6,)cos (2θR R l -=,则墙在AB 和CD 之间任一位置上,汽车转弯同样平安无事;(3)若s s <0,则不能急刹车,但由(2)知若墙长和位置符合一定条件,汽车照样可以转弯。
点评:利用基本知识解决实际问题的关键是看能否将实际问题转化为合理的物理模型。
三. 匀速圆周运动的实例变形课文中的圆周运动只有汽车过桥和火车转弯两个实例,而从这两个实例可以变化出很多模型。
试分析如下:(一)汽车过桥原型:汽车过凸桥如图1所示,汽车受到重力G 和支持力F N ,合力提供汽车过桥所需的向心力。
假设汽车过桥的速度为v ,质量为m ,桥的半径为r ,r mv F G N 2=-。
分析:当支持力为零时,只有重力提供汽车所需的向心力,即rmv G 20=,gr v =0 1. 当汽车的速度0v v >,汽车所受的重力G 小于过桥所需的向心力,汽车过桥时就会离开桥面飞起来。
2. 当汽车的速度0v v =,汽车所受的重力G 恰好等于过桥需要的向心力,汽车恰好通过桥面的最高点。
),(020gr v rmv G == 3. 当汽车的速度0v v <,汽车所受的重力G 大于所需的向心力,此时需要的向心力要由重力和支持力的合力共同来提供。
)(2rmv F G N =- 因此,汽车过凸桥的最大速度为gr 。
模型一:绳拉小球在竖直平面内过最高点的运动。
如图2所示,小球所受的重力和绳的拉力的合力提供小球所需的向心力,即rv m F mg T 2=+。
分析:当绳的拉力为零时,只有重力提供小球所需的向心力,即r mv G 20=,gr v =01. 当小球的速度0v v >,物体所受的重力G 已不足以提供物体所需的向心力。
不足的部分将由小球所受的绳的拉力来提供,只要不超过绳的承受力,已知物体的速度,就可求出对应的拉力。
)(2rv m F mg T =+ 2. 当小球的速度0v v =,物体所受的重力G 刚好提供物体所需的向心力。
),(020gr v rmv G == 3. 当小球的速度0v v <,物体所受的重力G 大于所需的向心力,此时小球将上不到最高点。