当前位置:文档之家› MIMO信道的信道容量1

MIMO信道的信道容量1


2.1 MIMO 信道的并行分解
发送端和接收端都有多个天线时, 可以获得另外的一种增益, 称作复用增益。 MIMO 信道的服用增益来源于 MIMO 信道可以分解为 R 个并行的独立信道。 在这 些独立的信道上传输多路数据, 数据速率就可以比单个天线系统提高 R 倍, 这个 提高的倍数就是复用增益。 这个分解过程就用到了矩阵理论中的奇异值分解的知 识。 奇异值分解(singular value decomposition ,SVD)是线性代数中一种重要的矩
Tr ( R x )
。 于是, 我们有 H (Y ) B log2 det[eRy ]

I ( X ; Y ) B log 2 det[ I M r HRx H H ] (1-2)
MIMO 信道容量就是所有满足功率约束条件的输入协方差矩阵 Rx 中, 使得互 信息量最大,即
C max B log 2 det[ I M r HRx H H ] (1-3)
C max B log 2 (1 i 2 i ) (1-4)
i:i i i 1
RH
其中 RH 是 H 的非零奇异值的个数。 由于 MIMO 信道可以分解成 RH 个并行信道, 因此称其自由度为 RH 。由于 P / 2 ,式(1-4)所示的容量也可以根据第 i 个 并行信道的功率 Pi 表示为
R i 2 Pi P C max B log 2 (1 2 ) max B log 2 (1 i i ) (1-5) P : P P i 1 P : P P i 1 P RH
H i i i i i i
其中 i i 2 P / 2 是满功率时第 i 个信道的信噪比。上式表明,高信噪比时,信 道容量随信道的自由度线性增长;相反,低信噪比时,所有功率都会分配在信噪 比最大 (即 i 2 最大) 的那个信道上。 式 (1-5) 与平坦衰落信道或频率选择性信道类似。 其最优解是 MIMO 信道的注水法功率分配:
Ry 为
R y E[ yy H ] HRx H H I M r
可以证明,给定协方差矩阵为
Ry
(1-1)
的所有随机向量中,零均值循环对称随机向量
的熵最大。而仅当输入向量 x 是零均值循环对称复高斯随机变量时,y 才是零均 值循环对称复高斯随机变量, 所以零均值循环对称复高斯随机变量是式中 x 的最 佳分布, 功率约束条件是 从而互信息为
1 HH H I M r M t M t lim
讲此式带入式(1-7)可得,当 M t 趋于无限大时,互信息变为常数 C M r B log 2 (1 ) 。定义 M min( M t , M r ) ,则随着 M 的增大,MIMO 信道在位 置 CSTI 的情况下容量将趋于 C MB log 2 (1 ) ,随着 M 线性增长。在天线数较 少时也能观察到这种随 M 线性增长的规律。同样的,当信噪比很大时,对于任 意 M t 和 M r ,容量也随着 M min( M t , M r ) 线性增长。由于 ZMSW MIMO 信道的 秩 RH M min( M t , M r ) ,因此无 CSIT 时,高信噪比或者天线数很多时,信道容 量随信道自由度线性增长。这些结论是 MIMO 技术颇具吸引力的主要原因:只 要接收端能正确估计信道信息,即使发送端不知道信道状态,ZMSW MIMO 信道 的容量也与发送端和接收端中的最小天线数成线性增长的关系。因此 MIMO 信 道在不需要增加信号功率或带宽的情况下就可以提供很高的数据率。但需注意, 信噪比非常低时增加发送天线并无益处,容量只与接受天线数有关。这是因为信
进行讨论。对于静态信道,如果发送端不知道信道状态或者信道的平均互信息, 那么它也无法确定该以什么样的速率发送方能保证数据的正确接收。 此时最适合 的容量定义为中断容量。 发送端以固定速率 R 来发送, 中断率表示接收端不能正 确接收的概率,也即信道 H 的互信息小于 R 的概率,其值为
out p ( H : B log 2 det[ I M
列数,所以 RH min( M t , M r ) 。满秩的情况称为富散射环境,此时 RH min( M t , M r ) 。 其他情况可能是低秩的, 若某个信道中的 H 的元素高度相关, 其秩可能会降为 1。 用发送与编码和接受成形对信道的输入输出 x 和 y 分别进行变换,就可以实现
后作为天线的输入, 矩阵的并行分解。 发送预编码将输入向量 x 经线性变换 x Vx
接收成形将信道的输出 y 乘以 U H ,如图(2)
x
x Vx
x
y Hx n
y
UH y y
y
图 2 发送预编码与接收成形 发送预编码和接收成形将 MIMO 信道变换成 RH 个并行的单入单出 SISO 信道, 其
。这一点可以从奇异值分解得到: ,输出为 y 输入为 x
C B log 2 (1 h )
2
2 , 其中 P / , 信道矩阵 H
变成了信道增益向量 h。最优权值向量,是
C hH / h

2.发送端未知信道:平均功率分配
假设接收端已知信道信息,而发送端未知,那么发送端讲无法在各天线上进 行优化功率分配,或是优化天线之间的协方差特性。如果 H 分布符合 ZMSW 信 道增益模型, 其均值和方差对各个天线来说是对称的。因此我们认为应该把功率 平均分配给每个发射天线上。 这样, 输入的协方差矩阵是酉矩阵乘上了一个系数:
1
1 n
1 x 2 x
1
1 y
2
2 n
2 y
3
3 n
2 x
3 y
图 1 MIMO 信道奇使用异值分解后的等效并行信道
2.2 静态信道
MIMO 信道的容量是 SISO 信道的互信息公式在矩阵信道下的扩展。 静态信道 下,接收端可以容易地对 H 做出很好的估计,因此本节假设有发送端信道边信 息(channel side information at the transmitter ,CSIT) 。在此假设下,信道容量由 信道输入向量 x 和输出向量 y 之间的互信息确定:
Rx ( / M t ) I M t 。在上述假设下,这样的输入协方差矩阵确实能够使信道互信息
量最大。此时互信息为
I ( x; y ) B log 2 [ I M r
可用奇异值分解将此式表示为
RH

Mt
HH H ]
I ( x; y ) B log 2 (1
i 1
i
Mt
1 引言
信道容量的计算是研究噪声信道的主要关注点之一。信道容量的定义是以任 意小的差错率传输信息的最大速率,它建立了可靠通信的基本极限。因此,信道 容量广泛应用于衡量通信系统的性能。本文的主要目标是研究与 MIMO 无线信 道有关的信道容量。 MIMO 信道的香农容量是能够以任意小的差错率传输的最大数据率。中断容 量则定义为能使中断率不超过某个数值的最大数据率。 信道容量的大小和收发两 端是否已知信道增益矩阵或其分布有关。 下文先给出不同信道信息假设下静态信 道的容量,它是其后讨论的衰落信道容量的基础。
H U V H
其中 M r M t 的矩阵 U 和 M t M r 的矩阵是酉矩阵, M r M t 的矩阵 是由 H 的奇 异值 i 构成的对角阵即 di且
i i , 其中 i 为 HH H 的第 i 大特征值。 因为矩阵 H 的秩不能超过他的行数或
i 、输出为 y i ,噪声为 n i ,信道 了 RH 个独立的并行信道,第 i 个信道的输入为 x 增益为 i 。注意 i 之间是有关联的,他们都是 H 的函数。不过由于这些并行信 道并不相互干扰, 所以我们说这些信道总是通过发送功率联系在一起的一组独立 信道。并行分解如图(3)所示。并行信道互不干扰,使得最大似然解调的复杂 度随 RH 线性增长。此外,通过在这些信道上发送独立数据,MIMO 的数据速率 将是单天线系统的 RH 倍,即复用增益为 RH 。但需注意,每个信道的性能与 i 有 关。
Pi 1/ 0 1/ i 0 P
其中 0 为某个门限值。由此得到信道容量为
i 0 i 0 (1-6)
C B log 2 (
i: i 0
i ) 0
对于有一个发送天线和多个接收天线的单入多出系统,或者有多个发送天线 一个接收天线的多入单出系统,也可以定义出收发都有理想信道信息时的容量。 这些信道可以通过多天线获得分集增益和阵列增益,但没有复用增益。当发送端 和接收端都已知信道信息时, 其容量等于信号在发送端或接收端进行最大比合并 后得到的 SISO 信道的容量为
C max I ( X ; Y ) max[ H (Y ) H (Y | X )] (1)
p ( x) p( x)
其中 H (Y ) 是 y 的熵,H (Y | X ) 是 y|x 的熵。 由熵的定义可知,H (Y | X ) H ( n) , 其中 H ( n) 为噪声熵。噪声的熵独立于信道输入,所以最大化互信息就是最大化 y 的熵。 若给定输入向量 x 的协方差矩阵为 R x , 那么 MIMO 信道输出 y 的协方差矩阵
U H ( Hx n) y U H (U V H x n) n) U H (U V HVx U H n U HU V H Vx n x
U H n , 是由 H 的奇异值构成的对角阵。注意到乘上酉矩阵不改变噪声 其中 n
与 n 同分布的。这样,发送预编码和接收成形将 MIMO 信道变换成 的分布,即 n
r

Mt
HH H ] R )
(1-10)
这个概率取决于 HH H 的特征值分析,这些特征值是 H 的奇异值的平方。人们对 聚真气一直的分布问题已经进行了研究,对于 MIMO 信道中常见的情形,已经 得到了分布的结果。 当发送端和接收端的天线数目很多时, 随机矩阵理论给出了关于 H 的奇异值 分布的中心极限定理。根据这一定理,所有信道实现都有相同的互信息。作为中 心极限分布的例子,假设接收端天线数固定为 M r 那么在 ZMSW 模型下,大数定 律表明
相关主题