一、冷裂纹
焊接接头冷却到较低温度时(对于钢来说在MS温度,即奥氏体开始转变为马氏体的温度以下)产生的焊接裂纹。
最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-------因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。
产生原因
①焊接接头存在淬硬组织,性能脆化。
②扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。
(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)③存在较大的焊接拉应力
预防措施
①选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性②减少氢来源,焊材要烘干,接头要清洁(无油、无锈、无水)③避免产生淬硬组织,焊前预热、焊后缓冷(可以降低焊后冷却速度)④降低焊接应力,采用合理的工艺规范,焊后热处理等⑤焊后立即进行消氢处理(即加热到250℃,保温2~6小时左右,使焊缝金属中的扩散氢逸出金属表面)。
二、热裂纹
焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹。
焊接热裂纹(welding hot breaking)多产生于接近固相线的高温下,有沿晶界分布的特征,有时也能在低于固相线的温度下沿着“多边化边界”形成。
焊接热裂纹通常产生于焊缝金属内,也可能在焊接熔合线邻近的热影响区组织内(母材金属)。
按裂纹产生的机理、形态和温度区间不同,焊接热裂纹可分为:凝固裂纹,液化裂纹,多边化裂纹和失塑裂纹4种。
造成液化裂纹的原因是:(l)金属材料的晶粒边界聚集较多的低熔点物质。
(2)由于快速加热使某些金属化合物分解而来不及扩散,局部晶界产生某些合金元素的富集而达到共晶成分,使局部组织的熔点下降,在焊接热影响下促使局部晶界液化。
防止液化裂纹产生的措施有:严格控制母材的杂质含量; 合理选用焊接材料;制定合理的焊接工艺规范,尽量减少焊接热作用。
多边化裂纹在焊缝金属凝固结晶不平衡的条件下,在低于固相线温度的高温区域,沿多边形化边界形成的热裂纹。
它与一次结晶的晶界无明显关系,较多产生于单相奥氏体金属中。