工程力学 强度理论
σy σx
适用范围: 材料的脆断
要求材料在脆断前均服从胡克定律 铸铁在混合型应力状态中,压应力占主导引起的材料脆断
1 0
3 0
1 3
与实验结果也较符合;
局限性:
1、第一强度理论不能解释的问题,未能解决,
2、在二向或三向受拉时,
r 2 1 ( 2 3 ) r1 1
§2
经典强度理论
构件由于强度不足将引发两种失效形式 脆性断裂: 材料无明显的塑性变形即发生断裂; 断面较粗糙; 且多发生在垂直于最大正应力的截面上; 如铸铁受拉、扭,低温脆断等。
塑性屈服(流动): 材料破坏前发生显著的塑性变形; 破坏断面粒子较光滑; 且多发生在最大切应力面上; 例如低碳钢拉、扭,铸铁压。
适用范围: 材料的脆断
1 特别适用于拉伸型应力状态:
混合型应力状态中拉应力占主导 但
2 3 0
1 0, 3 0,
1 3
适用范围
铸铁拉伸 铸铁扭转
局限性:
1 只突出
1未考虑的 2 , 3
影响,
2、对没有拉应力的应力状态无法应用, 3、对塑性材料的破坏无法解释, 4 不能解释材料在三向均压下不发生断裂的事实;
max [ ]
是否强度就没有问题了?
强度理论:
人们根据大量的破坏现象,通过判断推理、概 括,提出了种种关于破坏原因的假说,
找出引起破坏的主要因素, 经过实践检验,不断完善,在一定范围与实际相符 合,上升为理论。 为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。
2. 最大伸长线应变理论(第二强度理论)
材料发生断裂的主要因素是最大伸长线应变; 无论处于什么应力状态,只要危险点处最大伸长线应变 达到与材料性质有关的某一极限值,材料就发生断裂
σ2 σ1 σ3
σ
脆断准则:
1 jx
复杂应力状态下最大线伸长应变
1 [ 1 ( 2 3 )] / E
杆件基本变形下的强度条件
max
M max max [ ] W
FN ,max [ ] A
max [ ]
Fs S max [ ] bI z T max [ ] Wp
* z
max [ ]
max
max
满足
max [ ]
、不同材料在同一环境及加载条件下对为失
效具有不同的抵抗能力。
例1 常温、静载条件下 低碳钢的拉伸破坏 低碳钢塑性屈服失效时光滑
表面出现45度角的滑移线;
表现为塑性屈服失效; 具有屈服极限
s
铸铁拉伸破坏
铸铁脆断失效时沿横截面断裂; 表现为脆性断裂失效; 具有抗拉强度极限
b
二、同一材料在不同环境及加载条件下也表现出对 失效的不同抵抗能力。
例2 常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉
平断口 不再出现塑性变形; 切槽导致应力集中使根部附近出现两向和三向拉伸应力状态。 沿切槽根部发生脆断;
例3 常温静载条件下,圆柱形铸铁试件受压时
铸铁受压后形成鼓形,具有明显的塑性变形; 此时材料处于压缩型应力状态; 不再出现脆性断口,而出现塑性变形;
建立常温静载复杂应力状态下的弹性失效准则: 强度理论的基本思想是:
确认引起材料失效存在共同的力学原因,提出关于这一 共同力学原因的假设; 根据实验室中标准试件在简单受力情况下的破坏实验 (如拉伸),建立起材料在复杂应力状态下共同遵循的 弹性失效准则和强度条件。 实际上,当前工程上常用的经典强度理论都按脆性断裂和塑 性屈服两类失效形式,分别提出共同力学原因的假设。
局限性:
1、未考虑
2
的影响,试验证实最大影响达15%。
2、不能解释三向均拉下可能发生断裂的现象,
σ2 σ1 σ3
σ
屈服准则:
max jx
复杂应力状态下的最大切应力
单向应力状态下 屈服条件 相应的强度条件:
max ( 1 3 ) / 2
jx
s
2
1 3
s
ns
低碳钢拉伸
低碳钢扭转
适用范围: 塑性屈服
此理论较满意地解释了塑性材料的屈服现象; 并能解释材料在三向均压下不发生塑性变形或断裂的事实。 偏于安全 常用于载荷往往较不稳定的机械、动力等行业
1. 最大拉应力理论(第一强度理论)
材料发生断裂的主要因素是最大拉应力;
认为无论是什么应力状态,只要危险点处最大拉应力 达到与材料性质有关的某一极限值,材料就发生断裂
σ2
σ
σ1 σ3
脆断准则:
1 b
相应的强度条件:
1 t
t
b
nb
与铸铁,工具钢,工业陶瓷等多数脆性材料的实验结果较符合
例4 常温静载条件下,圆柱形大理石试件受轴向 压力和围压作用下
发生明显的塑性变形; 此时材料处于三向压缩应力状态下;
在简单试验的基础上已经建立的强度条件
根据常温静力拉伸和压缩试验,已建立起单向应力状态下的 弹性失效准则; 考虑安全系数后,其强度条件 根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性 失效准则; 考虑安全系数后,强度条件
似乎比单向拉伸时更安全,但实验证明并非如此。
局限性
虽然考虑了
2 3
的影响,
它只与石料、混凝土等少数脆性材料的实验结果较符合;
,
混凝土、花岗岩受压时在 横向(ε1方向)开裂
但上述材料的脆断实验不支持本理论描写的 对材料强度的影响规律。
2 3
3. 最大切应力理论(第三强度理论) 材料发生塑性屈服的主要因素是 最大切应力; 无论处于什么应力状态,只要危险点处最大切应力达到 与材料性质有关的某一极限值,材料就发生屈服。
单向应力状态下 断裂条件
jx b / E
b 1 [ 1 ( 2 3 )] E E
1 ( 2 3 ) b
相应的强度条件:
1 u( 2 3 ) t
b
nb
实验表明:
此理论对于一拉一压的二向应力 状态的脆性材料的断裂 较符合 铸铁受拉压比第一强度理论更接近实际情况。