数学建模零件参数的优化设计Company number【1089WT-1898YT-1W8CB-9UUT-92108】零件参数的优化设计摘要本文建立了一个非线性多变量优化模型。
已知粒子分离器的参数y由零件参数)72,1(=ixi 决定,参数ix的容差等级决定了产品的成本。
总费用就包括y偏离y造成的损失和零件成本。
问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。
我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。
2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。
在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。
但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。
经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。
最终计算出的各个零件的标定值为:ix={,,,,,,},等级为:BBCCBBBd,,,,,,=一台粒子分离器的总费用为:元与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。
为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。
最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。
关键字:零件参数 非线性规划 期望 方差一、问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
零件参数包括标定值和容差两部分。
进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。
若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。
进行零件参数设计,就是要确定其标定值和容差。
这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。
试通过如下的具体问题给出一般的零件参数设计方法。
粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为:y 的目标值(记作y 0)为。
当y 偏离y 0+时,产品为次品,质量损失为1,000元;当y 偏离y 0+时,产品为废品,损失为9,000元。
零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。
7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):现进行成批生产,每批产量1,000个。
在原设计中,7个零件参数的标定值为:x1=,x2=,x3=,x4=,x5=,x6=16,x7=;容差均取最便宜的等级。
请你综合考虑y偏离y造成的损失和零件成本,重新设计零件参数(包括标定值和容差),并与原设计比较,总费用降低了多少二、模型假设1、将各零件参数视为随机变量,且各自服从正态分布;2、假设组成离子分离器的各零件互不影响,即各零件参数互相独立;3、假设小概率事件不可能发生,即认为各零件参数只可能出现在容许范围内;4、在大批量生产过程中,整批零件都处于同一等级,。
本题可认为1000各零件都为A等、B等或C等;5、生产过程中出质量损失外无其他形式的损失;6、在质量损失计算过程中,认为所有函数都是连续可导的。
三、符号说明ix:第i类零件参数的标定值(i=1,2……7);ix∆:第i类零件参数的实际值相对目标值的偏差(i=1,2……7);ir:第i类零件参数的容差(i=1,2,……7);iσ:第i类零件参数的方差(i=1,2,……7);i i b a ,:标定值i x 的上、下限;y :离子分离器某参数的实际值;0y :离子分离器该参数的目标值; y :离子分离器某参数的均值;y ∆:离子分离器某参数的实际值y 相对平均值y 的偏差;y σ:离子分离器某参数的方差;1P :一批产品中正品的概率;2P :一批产品中次品的概率; 3P :一批产品中废品的概率;W :一批产品的总费用(包括损失和成本费);ij C :第i 类零件对应容差等级为j 的成本(j=A,B,C ) 单位:元/个。
四、问题分析由简单的线性代数式决定,而损失费涉及概率分布的非线性函数。
要求出损失费,就必须知道一批产品的次品率和废品率,结合各类零件都服从),(2i i x N σ,可假设y 也服从正态分布,联想正态分布的性质——当各变量均服从正态分布时,其线性组合也服从正态分布。
题中所给经验公式为一复杂的非线性的公式,无法直接对其分析处理,所以需借助泰勒公式将其展开并作相应处理使其线性化。
而对于零件成本,需先确定容差等级才能求得成本费。
由容差等级和各类零件的标定值i x 便可知道给类零件的容差i r 。
最后,便将问题转化为i x 、i r 关于总目标函数的最优解的问题上。
在进行零件参数设计时,如果零件设计不妥,造成产品参数偏离预先设定值,就会造成质量损失,且偏差越大,损失也越大;零件容差的大小决定了其制造成本,容差设计得越小(即精度越高)零件成本越高。
合理的设计方案应既省费用又能满足产品的预先设定值,设计方向应该如下:(1)设计的零件参数,要保证由零件组装成的产品参数符合该产品的预先设定值,即使有偏离也应是在满足设计最优下的容许范围。
(2)零件参数(包括标定值和容差等级)的设计应使总费用最小为优。
此外分析零件的成本及产品的质量损失不难发现,质量损失对费用的影响远大于零件成本对费用的影响,因而设计零件参数时,主要考虑提高产品质量来达到减少费用的目的。
五、模型建立为了确定原设计中标定值(x i i (,,,)=127 的期望值)及已给的容差对产品性能参数影响而导致的总损失W ,即确定y 偏离目标值y 0所造成的损失和零件成本,先列出总损失的数学模型表达如下:当然,为了确定总损失W ,必须知道1P 、2P 、3P (即正品、次品及废品的概率)。
为此,将经验公式用泰勒公式在)72,1( ==i x X i 处展开并略去二次以上高次项后来研究y 的概率分布,设y x f =)(,则 将标定值)72,1( =i x i 带入经验公式即得 所以 i i ix x fy y y ∆∂∂=-=∆∑=71 由于在加工零件时,在标定值知道的情况下,加工误差服从正态分布,即 且i x ∆相互独立,由正态分布性质可知 由误差传递公式得 22712712)()()(i i i i ii i i yx x x f x f σσσ∑∑==∂∂=∂∂= (1)由于容差为均方差的3倍,容差与标定值的比值为容差等级,则 y 的分布密度函数为y 偏离1.00±y 的概率,即次品的概率为⎰⎰+=8.16.14.12.12)()()()(y d y y d y P ϕϕ (2) y 偏离3.00±y 的概率,即废品的概率为⎰⎰+∞∞-+=8.12.13)()()()(y d y y d y P ϕϕ (3)由于y 偏离0y 越远,损失越大,所以在y σ固定时,调整y 使之等于目标值0y 可降低损失。
取0y y y -=∆即0y y =,则)(t φ为标准正态分布函数。
综合考虑y 偏离y 0造成的损失和零件成本,设计最优零件参数的模型建立如下: 目标函数min )90001000(10003271P P C W i ij ++⨯=∑=. )72,1( =≤≤i a x b i i i六、模型求解 初略分析对于原给定的设计方案,利用matlab 编程计算(见附录),计算结果如下:由于按原设计方案设计的产品正品率过低,损失费过高,显然设计不够合理。
进一步分析发现,参数均值y =偏离目标值0y =太远,致使损失过大。
尽管原设计方案保证了正本最低,但由于零件参数的精度过低,导致正品率也过低。
所以我们应综合考虑成本费和损失费。
模型的实现过程:本模型通过matlab 进行求解,我们通过理论模型求解和随机模拟的求解过程如下:在给定容差等级的情况下,利用matlab 中求解非线性规划的函数fmincon ,通过多次迭代求解,最终求得一组最优解。
最初,我们设定的fmincon 函数的目标函数就是总费用,约束条件为各个标定值的容许范围,以及各零件标定值带入产品参数表达式应为0y ,即。
然而,在迭代过程中我们发现,求解过程十分慢,在给定容差等级的确定的情况下,计算最优标定值需要将近400秒,如果在此基础上对108种容错等级进行穷举查找最优组合,将需要大概12小时。
显然这是不合理的。
因此,我们在仔细对matlab 实现代码研究发现,求解过程之所以慢,是因为代码中存在多次调用求偏导和积分的函数,在fmincon 的多次迭代中,耗费大量时间。
所以,为了提高求解速度,我们首先利用matlab 中diff 函数对产品参数中的各个表达式进行求偏导,然后得到多个带参表达式,利用int 函数对y 的概率密度函数进行积分,分别得到出现次品和废品概率的表达式,然后将这些表达式写进程序里,这样在求解过程中就不需要在每一次迭代中都要求偏导和积分了,修改后的程序运行时间大大减少。
程序流程图离子分离器参数方差y σ=模型检验对设计方案进行动态模拟,由于每种零件参数均服从正态分布,用正态分布随机数发生器在每种零件参数允许范围内产生1000个随机数参与真实值i x 的计算随机模拟 N 次后结果如下:根据最优解的y =,y σ=画出y 的概率分布图,再对x 随机取样画出y 的概率分布图(见图),由图可知:两组数据所画概率分布图的拟合度相当高,进一步确保了模型的正确性。
图概率分布图对比图通过以上数据,与原设计方案所得结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。
七、误差分析1、在建模过程中,通过泰勒公式将)(X f y =展开并略去二次及以上项使线性化,不可避免地产生了截断误差,所以展开后的式子只是原经验公式的近似关系式。
但在一般情况下,线性化和求总和在实用上具有足够的精度,所以由于函数线性化而略去的高次项可以忽略不计。
在函数关系式较复杂的情况下,将其线性化更具有明显的优势。
2、本模型忽略了小概率事件发生的可能,认为零件的参数只可能出现在允 范围内,即[]i i i i x x σσ3,3+-。
现实中,小概率事件仍有发生的可能性,但在大批量生产中,小概率事件的发生对最终结果没有影响,所以可以忽略。
3、该模型对于质量损失的计算,将所有函数都看作连续函数,而这对于每个零件参数而言是不可能的,所以其中也会产生误差。