实验三光电传感器转速测量实验实验目的1.通过本实验了解和掌握采用光电传感器测量的原理和方法。
2.通过本实验了解和掌握转速测量的基本方法。
实验原理直接测量电机转速的方法很多,可以采用各种光电传感器,也可以采用霍尔元件。
本实验采用光电传感器来测量电机的转速。
由于光电测量方法灵活多样,可测参数众多,一般情况下又具有非接触、高精度、高分辨率、高可靠性和相应快等优点,加之激光光源、光栅、光学码盘、CCD器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。
光电传感器在工业上的应用可归纳为吸收式、遮光式、反射式、辐射式四种基本形式。
图3.31说明了这四种形式的工作方式。
图3.31 光电传感器的工作方式图3.32直射式光电转速传感器的结构图直射式光电转速传感器的结构见图3.32。
它由开孔圆盘、光源、光敏元件及缝隙板等组成。
开孔圆盘的输入轴与被测轴相连接,光源发出的光,通过开孔圆盘和缝隙板照射到光敏元件上被光敏元件所接收,将光信号转为电信号输出。
开孔圆盘上有许多小孔,开孔圆盘旋转一周,光敏元件输出的电脉冲个数等于圆盘的开孔数,因此,可通过测量光敏元件输出的脉冲频率,得知被测转速,即n=f/N式中:n - 转速f - 脉冲频率N - 圆盘开孔数。
反射式光电传感器的工作原理见图3.33,主要由被测旋转部件、反光片(或反光贴纸)、反射式光电传感器组成,在可以进行精确定位的情况下,在被测部件上对称安装多个反光片或反光贴纸会取得较好的测量效果。
在本实验中,由于测试距离近且测试要求不高,仅在被测部件上只安装了一片反光贴纸,因此,当旋转部件上的反光贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。
通过测出这个跳变频率f,就可知道转速n。
n=f如果在被测部件上对称安装多个反光片或反光贴纸,那么,n=f/N。
N-反光片或反光贴纸的数量。
图3.33 反射式光电转速传感器的结构图实验仪器和设备1. 计算机 n台2. DRVI快速可重组虚拟仪器平台 1套3. 并口数据采集仪(DRDAQ-EPP2)1台4. 开关电源(DRDY-A)1台5. 光电转速传感器(DRHYF-12-A) 1套6. 转子/振动实验台(DRZZS-A)/(DRZD-A) 1 台实验步骤及内容1.光电传感器转速测量实验结构示意图如图3.34所示,按图示结构连接实验设备,其中光电转速传感器接入数据采集仪A/D输入通道。
图3.34 转速测量实验结构示意图2.启动服务器,运行DRVI程序,点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI采集仪主卡检测”进行服务器和数据采集仪之间的注册。
联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服务器”,开始监听8500端口。
3.打开客户端计算机,启动计算机上的DRVI程序,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。
4.在收藏菜单栏中选中“实验指导书”菜单项打开WEB版实验指导书,在实验目录中选择“转速测量”实验,按实验原理和要求设计该实验。
图3.35 转速测量实验(服务器端)设计原理图5.本实验的目的是了解转速测量的方法,并且要实现服务器端的数据共享功能,需要分别设计服务器端和客户端的实验脚本。
对于服务器端,首先需要将数据采集进来,用一个配套的8通道并口数据采集仪来完成外部信号的数据采集过程,在DRVI软件平台中,对应的数据采集软件芯片为“蓝津DAQ_A/D”芯片;数据采集仪的启动采用一片“0/1按钮”芯片来控制;为完成转速的计算,使用一片“VBScript 脚本”芯片,在其中添加转速计算的脚本,计算出电机的旋转频率和转速,并通过“数码LED”芯片显示出来;另外,为了控制计算的准确性,插入一片“数字调节”芯片,用于设定门限值,只有大于该门限值的信号才被认为是正常的转速信号;还需要选择一片“波形/频谱显示”芯片,用于显示通过光电传感器获取的转速信号的时域波形;然后再插入1片“内存条”芯片,用于数据采集仪采集到的存储数组型数据;再加上一些文字显示芯片和装饰芯片,就可以搭建出一个“转速测量”服务器端的实验,所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图3.35所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属性窗中相应的连线参数就可以完成该实验的设计和搭建过程。
6.在本实验中,转速的计算是通过在“VBScript脚本”芯片中添加脚本实现的,该芯片由内存芯片6000来驱动,当6000中数据产生变化,也就是有新的采样数据进来时,启动“VBScript脚本”芯片计算电机的旋转频率和转速。
其参考计算脚本如下:Dim data(2030),a(2000)GetArray6000,1024,datagate=Getline(4)k=0j1=0j2=0For i = 0To500If data(i)<=gate Thenj1=1End IfIf data(i)>gate Thenj1=0End IfIf j2<j1 Thena(k)=ik=k+1End Ifj2=j1Nextdt=GetInterval(6000)If k>2Thennpoint=a(k-1)-a(1)If npoint = 0Thennpoint = a(k)-a(1)End Ift=dt*npointinterval=t/(k-2)Fre=1.0/intervalSpeed=Fre*60Setline2,freSetline3,SpeedEnd IfIf k<3ThenSetline2,-1Setline3,-1End If7.对于客户端,与以前设计过的实验类似,必须在完成网络数据采集的基础上进行信号的分析和处理,在DRVI软件平台中,客户端是通过“TCP客户端”芯片和“定时器”芯片的组合来完成网络数据采集功能,另外还需采用“IP地址输入”芯片来指定数据共享服务器的IP地址,其它的芯片则与服务器端基本相同,客户端所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图3.36所示。
图3.36 转速测量实验(客户端)设计原理图图3.37 转速测量实验(服务器端)效果图8.在Web版的实验指导书中,还提供了本实验的参考脚本,可以直接点击附录中该实验脚本文件“服务器端”和“客户端”的链接,将参考的实验脚本文件读入DRVI 软件平台中并运行。
服务器端实验效果示意图如图3.37所示。
9.在电机转子侧面上贴上反光纸,将光电传感器探头对准反光纸,调节传感器后面的灵敏度旋钮至传感器对反光纸敏感,对其它部位不敏感,然后启动实验台,调节转速旋钮使电机达到某一稳定转速。
10.设定合适的门限值,点击面板中的“开关”按钮进行测量,观察并记录测量的转速值,调整传感器的位置,同时观察检测到的转速波形和传感器位置之间的关系,并分析由此带来的测量误差。
11.调节电机转速至另一稳定转速,再次进行测量。
12.对于客户端的分析,首先设定数据共享服务器的IP地址,然后在确保数据共享服务器端8500端口打开的前提下,点击“开关”按钮进行网络数据采集,观察数据共享服务器端转速测量值随外界条件变化而变化的情况,并记录实验结果。
客户端实验效果示意图如图3.38所示。
图3.38 转速测量实验(客户端)实验效果图扩展实验设计1.用自相关分析法测定转速。
2.用频谱分析法测转速。
实验报告要求1.简述实验目的和原理,根据实验原理和要求整理实验设计原理图。
2.根据实验步骤分析并整理转速测量结果。
思考题1.转速测量还可以采用其它那些传感器进行?2.采用光电传感器测量转速的精度如何,怎样保证测量的准确性?附录本实验的流程框图如图3.39所示。
图3.39 转速测量实验信号处理框图第五章距离与位移检测实验台实验距离与位移检测实验台简介DRJLWY型直线距离和位移运动实验台可用于教学演示,也可用作动态试验研究。
具有结构紧凑、体积小、运作方便、实验项目多、测试手段先进等特点。
图5.01是该实验台的立体结构图。
与德普施科技有限公司的DRVI软件平台结合,可以开设以下实验:1.运用不同传感器进行距离与位移测量实验2.不同位移传感器的特性测量标定实验3.直线运动模块的运动控制实验4.师生自己设计开发的各种实验结构组成及技术指标主要结构(如图)1.底座2.丝杆3.运动台4.位置开关5.导杆6.步进电机7.传感器及限位开关输出接线端子8.红外距离传感器9.超声波传感器图5.01 DRJLWY实验台实验台外形尺寸长X宽X高:580X180X165mm实验一距离位移传感器的测量一、实验目的:了解和掌握各种距离位移传感器的工作原理和测量方法。
二、实验仪器:德普施距离与位移传感器实验台 DRJLWY德普施基础实验平台 DRMY-ME-C德普施数据采集卡 DRDAQ-USBSINO光栅尺数显表 SINO-SDS3DRVI虚拟仪器实验平台 DRVI-2.3三、实验原理:在德普施距离和位移传感器上集成安装了各种传感器,包括有:直线位移滑变电阻式传感器,超声波测距传感器,红外光电式测距传感器。
实验台上还安装了一个数字显示光栅尺作为位移传感器的定标工具标定。
1.直线位移滑变电阻式传感器的工作原理(1)此种传感器基本结构分为三层:a.导电层(涂覆银膜用于导电)b.空气层(通过一定高度的分隔,使导电层与电阻层在自然状态下没有接触)c.导电塑料电阻层(涂覆导电塑料电阻的基层)(2)作用实现当导电层受到外力向下压,会与最下层的导电塑料层发生接触,从而输出信号。
图5.11 直线位移传感器的工作原理直线位移滑变电阻式传感器(又称电子尺,电阻尺)实际上就是一个滑变电阻器。
随着压力滑块的运动,输出的电阻也随之变化,电阻的阻值与滑块距零点的位置成正比。
传感器的原理图如下图5.12所示:利用滑变电阻器的滑块引出抽头对输入电压进行分,假设出电压为0至+5V之间的模拟电压信号,传感器的输出特性为Y = KX,如上图5.13所示。
其中Y为传感器的输出,X为滑变电阻器中间抽头距零点的距离。
2.超声波测距传感器的工作原理实验所使用的DRMNCS-B型超声波传感器的发射波频率是40KHz,传感器实际上是由单片机来控制工作的:发射探头发射一组5个超声波脉冲后,输出电平由高电平转为低电平;等到接收探头接收到足够强度的反射超声波信号时,输出信号由低电平转为高电平。
所以在实验的过程中,同学们可以观察到随着反射板到探头的距离变化,传感器输出波形的“脉冲”宽度也会对应的发生变化,测试距离越远,脉冲的宽度越宽。