解线性方程组b AX =的迭代法是从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解.在第三章中介绍的解线性方程组的直接方法一般适合于A 为低阶稠密矩阵(指n 不大且元多为非零)的情况,而在工程技术和科学计算中常会遇到大型稀疏矩阵(指n 很大且零元较多)的方程组,迭代法在计算和存贮两方面都适合后一种情况.由于迭代法是通过逐次迭代来逼近方程组的解,所以收敛性和收敛速度是构造迭代法时应该注意的问题.另外,因为不同的系数矩阵具有不同的性态,所以大多数迭代方法都具有一定的适用范围.有时,某种方法对于一类方程组迭代收敛,而对另一类方程组迭代时就发散.因此,我们应该学会针对具有不同性质的线性方程组构造不同的迭代.4.1 迭代法和敛散性及其MATLAB 程序4.1.2 迭代法敛散性的判别及其MATLAB 程序根据定理4.1和谱半径定义,现提供一个名为pddpb.m 的M 文件,用于判别迭代公用谱半径判别迭代法产生的迭代序列的敛散性的MATLAB 主程序 输入的量:线性方程组b AX =的迭代公式(4.7)中的B ; 输出的量:矩阵B 的所有特征值和谱半径mH )(B ρ=及其有关迭代法产生的迭代序列的敛散性的相关信息.function H=ddpbj(B)H=eig(B);mH=norm(H,inf); if mH>=1disp('请注意:因为谱半径不小于1,所以迭代序列发散,谱半径mH 和B 的所有的特征值H 如下:')elsedisp('请注意:因为谱半径小于1,所以迭代序列收敛,谱半径mH 和B 的所有的特征值H 如下:')end mH4.1.3 与迭代法有关的MATLAB 命令(一) 提取(产生)对角矩阵和特征值可以用表4–1的MATLAB 命令提取对角矩阵和特征值.MATLAB 命令 功 能DX=diag(X) 若输入向量X ,则输出DX 是以X 为对角元的对角矩阵; 若输入矩阵X ,则输出DX 是以X 的对角元构成的向量;DX=diag(diag(X))输入矩阵X ,输出DX 是以X 的对角元构成的对角矩阵,可用于迭代法中从A 中提取D .lm=eig(A) 输入矩阵A ,输出lm 是A 的所有特征值.(二) 提取(产生)上(下)三角形矩阵第四章 解线性方程组的迭代法可以用表4–2的MATLAB 命令提取矩阵的上三角形矩阵和下三角形矩阵.MATLAB 命令 功 能U=triu(A) 输入矩阵A ,输出U 是A 的上三角形矩阵. L=tril(A) 输入矩阵A ,输出L 是A 的下三角形矩阵.U=triu(A,1) 输入矩阵A ,输出U 是A 的上三角形矩阵,但对角元为0,可用于迭代法中从A 中提取U .L=tril(A,-1)输入矩阵A ,输出L 是A 的下三角形矩阵,但对角元为0,可用于迭代法中从A 中提取L .(三)稀疏矩阵的处理对稀疏矩阵在存贮和运算上的特殊处理,是MA TLAB 进行大规模科学计算时的特点和优势之一.可以用表4–3的MATLAB 命令,输入稀疏矩阵的非零元(零元不必输入),即可进行运算.MATLAB 命令 功 能ZA=sparse(r,c,v,m,n)表示在第r 行、第c 列输入数值v ,矩阵共m 行n 列,输出ZA ,给出 (r , c ) 及v 为一稀疏矩阵.MA=full(ZA) 输入稀疏矩阵ZA ,输出为满矩阵MA (包含零元)4.2 雅可比(Jacobi )迭代及其MATLAB 程序4.2.2 雅可比迭代的收敛性及其MATLAB 程序判别雅可比迭代收敛性的MATLAB 主程序输入的量:线性方程组b AX =的系数矩阵A ; 输出的量:系数矩阵=A ()nn ija ⨯的kk nki j kja a a -=∑≠=1 ),,2,1(n k =的值和有关雅可比迭代收敛性的相关信息.[n m]=size(A); for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0disp('请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛')return end end if a(i)<0disp('请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛 ') end例4.2.2 用判别雅可比迭代收敛性的MATLAB 主程序,判别由下列方程组的雅可比迭代产生的序列是否收敛?(1)⎪⎩⎪⎨⎧=+--=-+-=--;2.45,3.8210,2.7210321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+--=-+-=--.2.45.0,3.8210,2.7210321321321x x x x x x x x x 解 (1)首先保存名为jspb.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5];a=jspb(A)运行后输出结果请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛a =-8 -8 -1(2)在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5];a=jspb(A)运行后输出结果请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛 a =-8.0000e+000 -8.0000e+000 3.5000e+0004.2.3 雅可比迭代的两种MATLAB 程序利用MATLAB 程序和雅可比迭代解线性方程组b AX =的常用的方法有两种,一种方法是根据雅可比迭代公式(4.11)、(4.12)式、定理4.3和公式(4.14)编写一个名为jacdd.m 的M 文件并保存,然后在MATLAB 工作窗口输入对应的命令,执行此文件;另一种方法是根据雅可比迭代的定义,利用提取对角矩阵和上、下三角矩阵的MATLAB 程序解线性方程组b AX =.下面我们分别介绍这两种方法.用雅可比迭代解线性方程组b AX =的MATLAB 主程序输入的量:线性方程组b AX =的系数矩阵A 和b , 初始向量X 0,范数的名称P = 1, 2, inf 或 'fro .',近似解X 的误差(精度)wucha 和迭代的最大次数max1;输出的量:系数矩阵=A ()nn ija ⨯的kk nki j kja a a -=∑≠=1 ),,2,1(n k =的值和有关雅可比迭代收敛性的相关信息及其b AX =的精确解jX 和近似解X .的M 文件如下:function X=jacdd(A,b,X0,P,wucha,max1) [n m]=size(A); for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0disp('请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛')return end end if a(i)<0disp('请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛 ') endfor k=1:max1kfor j=1:mX(j)=(b(j)-A(j,[1:j-1,j+1:m])*X0([1: j-1,j+1:m]))/A(j,j);endX,djwcX=norm(X'-X0,P); xdwcX=djwcX/(norm(X',P)+eps); X0=X';X1=A\b;if (djwcX<wucha)&(xdwcX<wucha)disp('请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:')returnendendif (djwcX>wucha)&(xdwcX>wucha)disp('请注意:雅可比迭代次数已经超过最大迭代次数max1 ')enda,X=X;jX=X1',例4.2.3用 范数和判别雅可比迭代的MATLAB主程序解例4.2.2 中的方程组,解的精度为0.001,分别取最大迭代次数max1=100,5,初始向量X0=(0 0 0)T,并比较它们的收敛速度.解(1)取最大迭代次数max1=100时.①首先保存名为jacdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5]; b=[7.2;8.3;4.2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)运行后输出结果请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:a =-8 -8 -1jX =1.1000 1.2000 1.3000X =1.0994 1.1994 1.2993②在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]';X=jacdd(A,b,X0,inf, 0.001,100)运行后输出结果请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:a =-8.0000 -8.0000 3.5000jX =24.5000 24.6000 106.6000X =24.0738 24.1738 104.7974(2)取最大迭代次数max1=5时,①在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5];b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,5)运行后输出结果请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,雅可比迭代收敛请注意:雅可比迭代次数已经超过最大迭代次数max1a =-8 -8 -1jX =1.1000 1.2000 1.3000 X =1.0951 1.1951 1.2941②在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=jacdd(A,b,X0,inf, 0.001,5)运行后输出结果请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛 请注意:雅可比迭代次数已经超过最大迭代次数max1 a =-8.0000 -8.0000 3.5000 jX =24.5000 24.6000 106.6000 X =5.5490 5.6490 27.6553由(1)和(2)可见,如果系数矩阵A 是严格对角占优的,则雅可比迭代收敛的速度快;如果系数矩阵A 不是严格对角占优的,则雅可比迭代收敛的速度慢.因此,kk nki j kj a a a -=∑≠=1 ),,2,1(n k =的值越小,雅可比迭代收敛的速度越快.(二)利用雅可比迭代定义编写的解线性方程组的MATLAB 程序利用雅可比迭代定义编写解线性方程组(4.5)的MATLAB 程序的一般步骤 步骤1 将线性方程组(4.5)的系数矩阵A 分解为U L D A --=,其中=D ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn nn a a a a a a diag22112211),,(, -=L⎪⎪⎪⎪⎪⎭⎫⎝⎛-0001,2121n n n n a a aa -=U ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000,1112nn n a a a . 在MATLAB 工作窗口输入程序>> A=[a11 a12 …a1n; a21 a22 …a2n;…; an1 an2 …ann;]; D=diag(A) U=triu(A,1), L=tril(A,-1)运行后即可输出U L D A ,,的; 步骤2 若对角矩阵D 非奇异(即),,1,0n i a ii =≠,则(4.5)化为 b D X U L D X 11)(--++=.若记b D f U L D B 1111),(--=+=.则方程组的迭代形式可写作1)(1)1(f X B Xk k +=+ )2,1,0( =k 可以利用下面的MATLAB 程序完成>>dD=det(D); if dD==0disp('请注意:因为对角矩阵D 奇异,所以此方程组无解.') elsedisp('请注意:因为对角矩阵D 非奇异,所以此方程组有解.') iD=inv(D); B1=iD*(L+U);f1=iD*b;for k=1:max1X= B1*X0+ f1; X0=X; djwcX=norm(X-X0,P);xdwcX=djwcX/(norm(X,P)+eps); X1=A\b;if (djwcX<wucha)&(xdwcX<wucha)disp('请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:')returnendendif (djwcX>wucha)|(xdwcX>wucha)disp('请注意:雅可比迭代次数已经超过最大迭代次数max1 ')endenda,X=X;jX=X1',4.3 高斯-塞德尔(Gauss-Seidel)迭代及其MATLAB程序4.3.3 高斯-塞德尔迭代两种MATLAB程序AX=的常用方法有两种,一利用MATLAB程序和高斯-塞德尔迭代解线性方程组b种方法是根据高斯-塞德尔迭代公式(4.16)、(4.17)、定理4.3和公式(4.14)编写一个名为gsdd.m的M文件并保存,然后在MATLAB工作窗口输入对应的命令,执行此文件;另一种方法是根据高斯-塞德尔迭代的定义,利用提取对角矩阵和上、下三角矩阵的AX=.下面我们分别介绍这两种方法.MATLAB程序解线性方程组b(一)高斯-塞德尔迭代定义的MATLAB程序1AX=的MATLAB主程序1 用高斯-塞德尔迭代定义解线性方程组bAX=的系数矩阵A和b, 初始向量X0,范数的名称P = 1, 2, 输入的量:线性方程组binf, 或'fro.',近似解X的误差(精度)wucha和迭代的最大次数max1.A()n n ij a⨯的对角元构成的对角矩阵D、A的上三角形矩阵输出的量:以系数矩阵=U,但对角元为0、A的下三角形矩阵L,但对角元为0和有关高斯-塞德尔迭代收敛性的AX=的精确解jX和近似解X.相关信息及其bD=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); dD=det(D);if dD==0disp('请注意:因为对角矩阵D奇异,所以此方程组无解.')elsedisp('请注意:因为对角矩阵D非奇异,所以此方程组有解.')iD=inv(D-L); B2=iD*U;f2=iD*b;jX=A\b; X=X0; [n m]=size(A);for k=1:max1X1= B2*X+f2; djwcX=norm(X1-X,P);xdwcX=djwcX/(norm(X,P)+eps);if (djwcX<wucha)|(xdwcX<wucha)returnelsek,X1',k=k+1;X=X1;endendif (djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-塞德尔迭代收敛,此A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsedisp('请注意:高斯-塞德尔迭代发散,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jX和迭代向量X如下:')X=X';jX=jX' end endX=X';D,U,L,jX=jX'例4.3.3 用高斯-塞德尔迭代定义的MATLAB 主程序解下列线性方程组,取初始值)0,0,0(),,()0(3)0(2)0(1=x x x ,要求当3)()1(10-∞+<-k k x x 时,迭代终止.(1)⎪⎩⎪⎨⎧=+--=-+-=--.2.45.0,3.8210,2.7210321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++--=+-+=-+-=+-+.2132127,11613514,22382,575434321432143214321x x x x x x x x x x x x x x x x解 (1)首先保存名为gsdddy.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100)运行后输出结果请注意:因为对角矩阵D 非奇异,所以此方程组有解.请注意:高斯-塞德尔迭代收敛,此A 的分解矩阵D,U,L 和方程组的精确解jX 和近似解X 如下:此近似解与例4.2.3中的(1)中②的解X =(24.073 8, 24.173 8, 104.797 4)T比较,在相同的条件下, 高斯-塞德尔迭代比雅可比迭代得到的近似解的精度更高.(2)在MATLAB 工作窗口输入程序>> A=[3 4 -5 7;2 -8 3 -2;4 51 -13 16;7 -2 21 3];b=[5;2;-1;21]; X0=[0 0 0 0]';X=gsdddy(A,b,X0,inf,0.001,100)运行后输出结果请注意:因为对角矩阵D 非奇异,所以此方程组有解.请注意:高斯-塞德尔迭代发散,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jX 和迭代向量X 如下:jX =0.1821 -0.2571 0.7286 1.3036X = 1.0e+142 *0.2883 0.1062 0.3622 -3.1374(二) 高斯-塞德尔迭代公式的MATLAB 程序2 根据高斯-塞德尔迭代公式(4.16)、(4.17)、定理4.3和公式(4.14),现提供名为用高斯-塞德尔迭代解线性方程组b AX =的MATLAB 主程序2 输入的量:线性方程组b AX =的系数矩阵A 和b , 初始向量X 0,范数的名称P = 1, 2, inf, 或 'fro.',近似解X 的误差(精度)wucha 和迭代的最大次数max1.输出的量:系数矩阵=A ()nn ija ⨯的kk nki j kja a a -=∑≠=1 ),,2,1(n k =的值和有关D =10.0000 0 0 0 10.0000 0 0 0 0.5000 U =0 1 2 0 0 2 0 0 0L =0 0 0 1 0 0 1 1 0 jX =24.5000 24.6000 106.6000 X =24.4996 24.5996 106.5984AX=的精确解jX和近似解X.高斯-塞德尔迭代收敛性的相关信息及其b[n m]=size(A);for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j)));endfor i=1:nif a(i)>=0disp('请注意:系数矩阵A不是严格对角占优的,此高斯-塞德尔迭代不一定收敛')returnendendif a(i)<0disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且高斯-塞德尔迭代收敛')endfor k=1:max1for j=1:mif j==1X(1)=(b(1)-A(1,2:m)*X0(2:m))/A(1,1)endif j==mX(m)=(b(m)-A(m,1:M1)*X(1:M1)')/A(m,m);endfor j=2:M1X(j)=(b(j)-A(j,1:j-1)*X(1:j-1) -A(j,j+1:m)*X(j+1:m))/A(j,j);endenddjwcX=norm(X'-X0,P);xdwcX=djwcX/(norm(X',P)+eps); X0=X';X1=A\b;if (djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-塞德尔迭代收敛,此方程组的精确解jX和近似解X 如下:')returnendendif (djwcX>wucha)&(xdwcX>wucha)disp('请注意:高斯-塞德尔迭代次数已经超过最大迭代次数max1 ') enda,X=X;jX=X1',4.4 解方程组的超松弛迭代法及其MATLAB程序用雅可比迭代法和高斯-塞德尔迭代法解线性方程组时,有时收敛速度很慢,为了提高收敛速度,我们介绍超松弛迭代法,它是对高斯-塞德尔迭代的一种加速方法,适用于大型稀疏矩阵方程组的求解.4.4.2 超松弛迭代法收敛性及其MATLAB程序根据定理4.5和谱半径定义,现提供名为ddpbj.m的M文件,用于判别超松弛迭代用谱半径判别超松弛迭代法产生的迭代序列的敛散性的MATLAB主程序AX=的系数矩阵A和松弛因子om;输入的量:线性方程组b输出的量:矩阵])1([)(1D U L D B ωωωω-+-=-的所有特征值和谱半径mH)(ωρB =及其有关超松弛迭代法产生的迭代序列的敛散性的相关信息.D=diag(diag(A));U=-triu(A,1); L=-tril(A,-1); iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D); H=eig(B2);mH=norm(H,inf); if mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散,谱半径mH和B 的所有的特征值H 如下:') elsedisp('请注意:因为谱半径小于1,所以超松弛迭代序列收敛,谱半径mH和B 的所有的特征值H 如下:') end mH例4.4.1 当取ω=1.15,5时,判别用超松弛迭代法解下列方程组产生的迭代序列是否收敛?⎪⎪⎩⎪⎪⎨⎧-=+++-=---=+++=--+372364213824254321432143214321x x x x x x x x x x x x x x x x 解 (1)当取ω=1.15时,首先保存名为ddpbj.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7]; H=ddpbj(A,1.15)运行后输出结果请注意:因为谱半径小于1,所以超松弛迭代序列收敛,谱半径mH 和B 的所有的特征值H 如下:mH =0.1596 H =0.1049 + 0.1203i 0.1049 - 0.1203i -0.1295 + 0.0556i -0.1295 - 0.0556i (2)当取ω=5时,然后在MATLAB 工作窗口输入程序>> H=ddpbj(A, 5)运行后输出结果请注意:因为谱半径不小于1,所以超松弛迭代序列发散,谱半径mH 和B 的所有的特征值H 如下:mH =14.1082 H =-14.1082 -2.5107 0.5996 + 2.6206i 0.5996 - 2.6206i4.4.3 超松弛迭代法的MATLAB 程序用超松弛迭代法解线性方程组b AX =的MATLAB 主程序输入的量:线性方程组b AX =的系数矩阵A 和b , 初始向量X ,范数的名称P = 1, 2, inf, 或 'fro.',松弛因子om ,近似解X 的误差(精度)wucha 和迭代的最大次数max1.输出的量:谱半径mH ,以系数矩阵A 的对角元构成的对角矩阵D 、A 的上三角形矩阵U ,但对角元为0、A 的下三角形矩阵L ,但对角元为0, 迭代次数i ,有关超松弛迭代收敛性的相关信息及其b AX =的精确解jX 和近似解X .function X=cscdd (A,b,X,om,wucha,max1)D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); jX=A\b;[n m]=size(A);iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);H=eig(B2);mH=norm(H,inf);for k=1:max1iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);f2= om*iD*b; X1= B2*X+f2;X=X1; djwcX=norm(X1-jX,inf); xdwcX=djwcX/(norm(X,inf)+eps);if (djwcX<wucha)|(xdwcX<wucha)disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i如下:')mH,D,U,L,jX=jX', i=k-1,returnif i> max1disp('迭代次数已经超过最大迭代次数max1,谱半径mH,方程组的精确解jX,迭代次数i如下:')mH,D,U,L,jX=jX', i=k-1,endendendif mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散.')disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i和迭代序列X如下:')i=k-1,mH,D,U,L,jX,elsedisp('因为谱半径小于1,所以超松弛迭代序列收敛,近似解X如下:') end或function X=cscdd1 (A,b,X,om,wucha,max1)D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); jX=A\b;[n m]=size(A);iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);H=eig(B2);mH=norm(H,inf);for k=1:max1iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);f2= om*iD*b; X1= B2*X+f2; X=X1; djwcX=norm(X1-jX,inf);xdwcX=djwcX/(norm(X,inf)+eps);endif mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散.谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsedisp('请注意:因为谱半径小于1,所以超松弛迭代序列收敛.')if (djwcX<wucha)|(xdwcX<wucha)disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX和近似解X 如下:')mH,D,U,L,jX=jX',elsedisp('迭代次数已经超过最大迭代次数max1,谱半径mH,方程组的精确解jX和迭代向量X如下:')mH,D,U,L,X=X1';jX=jX'returnendend例4.4.3用超松弛迭代法(取ω=1.15和5)解例4.4.1中的线性方程组.解(1)当取ω=1.15时,首先保存名为cscdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7];b=[4;1;6;-3];X=[0 0 0 0]';X=cscdd (A,b,X,1.15,0.001,100),运行后输出结果谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i如下:mH =0.1596D =5 0 0 00 8 0 00 0 -4 00 0 0 7U =0 -1 1 20 0 -1 -30 0 0 10 0 0 0L =0 0 0 0-2 0 0 0-1 2 0 01 -3 -2 0jX =0.4491 0.2096 -1.4850 -0.0299i =3因为谱半径小于1,所以超松弛迭代序列收敛,近似解X如下:X =0.44840.2100-1.4858-0.0303(2)当取ω=5时,保存名为cscdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7];b=[4;1;6;-3];X=[0 0 0 0]';X=cscdd (A,b,X,5,0.001,100),运行后输出结果如下:请注意:因为谱半径不小于1,所以超松弛迭代序列发散.谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i和迭代序列X如下:i = mH =99 14.1082D =5 0 0 00 8 0 00 0 -4 00 0 0 7U =0 -1 1 20 0 -1 -30 0 0 10 0 0 0L =0 0 0 0-2 0 0 0-1 2 0 01 -3 -2 0jX = X =1.0e+114 *0.4491 -0.31220.2096 1.0497-1.4850 -3.7174-0.0299 3.9615。