汕头大学实验报告实验者:黄科岸学号:20XX141021实验日期:20XX年11月10日实验四差动变压器的性能实验一、实验目的了解差动变压器的工作原理和特性。
二、基本原理差动变压器的工作原理是电磁互感原理。
差动变压器的结构如图4—1所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。
差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图4—2所示。
图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。
对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。
由于两个二次绕组反向串接,所以差动输出电动势为零。
当衔铁移向二次绕组L21,这时互感M1大,M2小,因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。
图4—1差动变压器的结构示意图图4—2差动变压器的等效电路图在传感器的量程内,衔铁位移越大,差动输出电动势就越大。
同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。
因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。
由图4—2可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图4—3所示。
图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。
其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。
E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。
零点残余电动势的存在,使得传感器的输出特性在零点附近不灵敏,给测量带来误差,此值的大小是衡量差动变压器性能好坏的重要指标。
为了减小零点残余电动势可采取以下方法:图4—3 差动变压器输出特性1、尽可能保证传感器几何尺寸、线圈电气参数及磁路的对称。
磁性材料要经过处理,消除内部的残余应力,使其性能均匀稳定。
2、选用合适的测量电路,如采用相敏整流电路。
既可判别衔铁移动方向又可改善输出特性,减小零点残余电动势。
3、采用补偿线路减小零点残余电动势。
图4—4是其中典型的几种减小零点残余电动势的补偿电路。
在差动变压器的线圈中串、并适当数值的电阻电容元件,当调整W1、W2时,可使零点残余电动势减小。
(a) (b) (c)图4—4 减小零点残余电动势电路简单的原理说明:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。
其输出电势反映出被测体的移动量。
三、实验设备与器件单元主机箱中的±15V直流稳压电源、音频振荡器;差动变压器、差动变压器实验模板、测微头、双踪示波器。
四、实验步骤1、将差动变压器和测微头安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L2、L3为次级线圈;*号为同名端,如实验指导书图4-6。
2、按图4—6接线,差动变压器的原边L1的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4~5KHz,调节输出幅度峰峰值为Vp-p=2V(可用示波器监测)。
3、调节变压器铁芯大约处在变压器的中间位置4、微调变压器铁芯至变压器的中间位置并测量零点残余电压5、差动变压器的位移实验这时变压器铁芯可以左右位移,选择一个方向,从V p-p最小处开始旋动测微头的微分筒,每隔0.2mm(取15个点,共3mm)从示波器上读出一个输出电压V p-p值,填入下表4;然后将测位头退回到V p-p最小处开始反方向做相同的位移实验(也取15个点,共3mm;两个方向加上零点总共要读取31个点的数据)。
7、以位移零点为起点,作出位移距离分别为+1mm、-1mm及+3mm、-3mm时的灵敏度和非线性误差。
8、实验完毕,关闭电源,整理好实验台上的实验物品。
五、实验数据以及分析变压器处于中间位置时候,输出波形的最小Vp-p值为:Vp-p min=2.00mv位移的相对零点x=10.22mm差动变压器的输出特性曲线当x=0mm时,输出的总电势有最小值2mv不为0.因此,该差动变压器存在零点残余电势。
除此之外,输出电动势与位移基本上成线性关系,与实验指导书中图4-3一致。
以位移零点为起点,作出位移距离分别为+1mm、-1mm及+3mm、-3mm时的灵敏度和非线性误差。
位移的平均量是∆x=0.2mm,引起电动势的变化平均量是:∆V=5=25.2mv灵敏度s=∆V∆x=25.20.2=126mv/mm最小二乘法拟合直线的方程是:y=-(878*x)/7+16/7△V 0.628571 -0.45714 0.457143 -0.62857 0.285714由上图可知∆m=0.62857mv,y FS=127.7143mv所以非线性误差δ=∆myFS ∗100%=0.62857127.7143∗100%=0.49%②位移距离为-1mm时的灵敏度和非线性误差:位移的平均量是∆x=0.2mm,引起电动势的变化平均量是:∆V=5=24mv灵敏度s=∆V∆x=240.2=120mv/mm由上图可知∆m=2.5714mv,y FS=121.14mv所以非线性误差δ=∆myFS ∗100%=2.5714121.14∗100%=2.12%位移的平均量是∆x=0.2mm,引起电动势的变化平均量是:∆V=380−215=25.2mv灵敏度s=∆V∆x=25.20.2=126mv/mm由上图可知∆m=0.926mv,y FS=380mv所以非线性误差δ=∆myFS ∗100%=0.926380∗100%=0.244%位移的平均量是∆x=0.2mm,引起电动势的变化平均量是:∆V=15=24.7mv灵敏度s=∆V∆x=24.70.2=123.5mv/mm利用matlab得出最小二乘法拟合直线的方程是:y=-(8485*x)/68 - 61/34由上图可知∆m=3.7941mv,y FS=372mv所以非线性误差δ=∆myFS ∗100%=3.7942372∗100%=1.02%六、思考题查阅传感器相关理论知识,说明什么是差动变压器的零点残余电动势?如何产生?如何减少零点残余电动势和它的影响?在本次实验中你测得的零点残余电动势是多少?解答:由于差动变压器制作的不对称以及贴心位置等因素所造,造成衔铁偏移中心位置的距离为0时而输出电压不为0 的情况,这个电压就叫做差动变压器的零点残余电压。
减少零点残余电动势和它的影响的方法是:尽量移动衔铁使得电动势减少到最小。
在本次试验中测得的零点残余电动势是2mv。
七、误差分析分析本次实验过程中导致测量结果产生误差的各种原因和减少误差的方法。
解答:①因为差动变压器制作的不对称以及贴心位置等因素使产生零点残余电动势。
②实验重复次数不够多,得到的实验数据存在偶然性,相对而言误差较大。
汕 头 大 学 实 验 报 告实验者:黄科岸 学号:20XX141021 实验日期:20XX 年11月10日实验五 激励频率对差动变压器特性的影响一、实验目的了解初级线圈激励频率对差动变压器输出性能的影响。
二、基本原理差动变压器的输出电压的有效值可以近似用关系式:o U =22221)(ppiLR U M M ωω+-表示,式中L P 、RP 为初级线圈电感和损耗电阻,i U 、ω为激励电压和频率,M1、M2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若RP2>ω2LP2,则输出电压Uo 受频率变动影响较大,且灵敏度较低,只有当ω2LP2>>RP2时输出Uo 与ω无关,当然ω过高会使线圈寄生电容增大,对性能稳定不利。
三、需用器件与单元主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。
四、实验步骤1、差动变压器及测微头的安装、接线同实验四图4—6。
2、 检查接线无误后,合上主机箱电源开关,调节主机箱音频振荡器L V 输出频率为2KH Z ,V p-p =2V(用示波器监测)。
调节差动变压器的铁芯大约处在线圈的中心位置,即电路的3、4端点输出信号的V p-p 比较小时。
3、 向任一方向调节测微头让差动变压器的铁芯做位移,位移量△X=2.5mm ,使差动变压器有某个较大的V p-p 输出,记录下此V p-p 输出,并填入表5的第一格。
4、在保持位移量△X=2.5mm 不变的情况下,改变激励信号(音频振荡器)的频率从3KHz ~10KHz (激励电压V p-p =2V保持不变,可用主机箱的频率表监测频率的变化)时,记录差动变压器相应输出的V p-p 值,填入表5。
5、根据表5的数据作出差动变压器的幅频(F—V p-p )特性曲线,标出谐振点。
6、实验完毕,关闭电源,整理好实验台上的实验物品。
五、实验数据以及分析零点残余电动势Vp-p=2mv保持位移量为△X=2.5mm不变,激励信号的频率从3khz~10kHz,差动变压器K=7khz时候是位移量为△X=2.5mm时的差动变压器的谐振点。
六、思考题你认为检测频率特性对差动变压器的应用有什么意义?解答:在相同位移量的条件下,改变激励信号的频率,差动变压器输出的电动势不同。
为了提高差动变压器的灵敏度,需将激励信号的频率设置在差动变压器的谐振点处。