湿法脱硫系统设备常见故障处理方法及预控措施*****一、脱硫系统概述1、湿法脱硫工艺流程石灰石——石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。
其基本工艺流程如下:锅炉烟气经电除尘器除尘后,经过引风机、引风机出口烟道、吸收塔入口烟道,进入吸收塔。
在吸收塔内烟气自下向上流动,被向下流动的循环浆液以逆流方式洗涤。
循环浆液自吸收塔底部由浆液循环泵向上输送至吸收塔喷淋层,每个浆液循环泵与其各自的喷淋层相连接(共4层),由塔内设置的布液管道及喷嘴雾化后分散成细小的液滴均匀喷射到吸收塔整个断面,使气体和液体得以充分接触洗涤脱除烟气中的SO2、SO3、HCL和HF。
与此同时,吸收SO2(SO3)后的浆液在吸收塔内“强制氧化工艺”的处理下被导入的空气强制氧化为石膏(CaSO4•2H2O),并消耗作为吸收剂的石灰石。
石灰石与二氧化硫反应,经强制氧化生成的石膏,通过石膏排出泵排出吸收塔,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器(一级脱水设备)和真空皮带脱水机(二级脱水设备),最终形成湿度小于10%的石膏副产品。
经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。
同时按程序用工艺水对除雾器进行冲洗。
进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。
在吸收塔出口,烟气一般被冷却到46~55℃左右,洁净的烟气通过烟道进入烟囱排向大气。
2、脱硫过程主反应:1.SO2 + H2O → H2SO3 吸收2.CaCO3 + H2SO3 → CaSO3 + CO2 + H2O 中和3.CaSO3 + 1/2 O2 → CaSO4 氧化4.CaSO3 + 1/2 H2O → CaSO3•1/2H2O 结晶5.CaSO4 + 2H2O → CaSO4•2H2O 结晶6.CaSO3 + H2SO3 → Ca(HSO3)2 pH控制吸收塔中的pH值通过注入石灰石浆液进行调节与控制,一般pH 值在5.5~6.2之间。
二、主要工艺系统设备及功能1、烟气系统烟气系统包括烟道、烟气挡板、密封风机、事故喷淋装置等设备组成。
烟气挡板——实现FGD装置投入和退出运行,分为原烟气挡板、净烟气挡板和旁路烟气挡板。
前者安装在吸收塔的进、出口,旁路挡板安装在原烟道与烟囱之间。
当FGD系统运行时,旁路烟道关闭,接通密封空气进行密封。
当FGD系统故障或入口烟温超过设计值时旁路烟气挡板打开,同时关闭原烟气和净烟气挡板,同时接通密封空气进行密封,保证故障时FGD系统迅速退出运行,确保锅炉的正常运行和FGD防腐层不被破坏。
2、吸收系统吸收系统的主要设备是吸收塔,是脱硫系统的核心装置,完成对SO2、SO3等有害气体的吸收。
我们采用的是喷淋塔结构,是石灰石——石膏湿法烟气脱硫工艺中的主导塔型。
喷淋层设在吸收塔的中上部,吸收塔浆液循环泵对应各自的喷淋层。
每个喷淋层由母管、支管和喷嘴组成,喷嘴就布置在直管的末端,其作用是将循环浆液进行细化喷雾,以实现均匀的喷淋效果。
吸收塔循环泵将塔内的浆液循环打入喷淋层,为防止塔内沉淀物吸入泵体造成泵的堵塞、叶轮磨损及喷嘴的堵塞,循环泵前都装有半圆状的玻璃钢滤网。
氧化空气系统是吸收塔内的重要部分,氧化空气的功能是保证吸收塔反应池内浆液得到充分氧化并生成石膏。
氧化空气注入不充分将会引起石膏结晶的不完善,还可能导致吸收塔内壁的结垢,浆液脱水困难等现象。
吸收塔内还包括除雾器及其冲洗设备,吸收塔内最上面的喷淋层上部设有二级除雾器,它主要用于分离由烟气携带的液滴,采用阻燃聚丙烯材料制成。
3、浆液制备系统浆液制备通常分湿磨制浆与干粉制浆两种方式。
不同的制浆方式所对应的设备也各不相同。
马电采用湿磨制浆方式主要设备包括:卸料仓、振动给料机、斗式提升机、埋刮板输送机、石灰石料仓、皮带给料机、湿式球磨机、浆液循环箱、磨机浆液循环泵、浆液旋流器、浆液箱、浆液搅拌器、浆液输送泵等组成。
浆液制备系统的任务是向吸收系统提供合格的石灰石浆液。
通常要求粒度为90%小于325目。
4、石膏脱水系统石膏脱水系统包括水力旋流器和真空皮带脱水机、真空泵等关键设备。
水力旋流器作为石膏浆液的一级脱水设备,其利用了离心力加速沉淀分离的原理,浆液流切向进入水力旋流器的入口,使其产生环形运动。
粗大颗粒富集在水力旋流器的周边,细小颗粒则富集在中心。
已澄清的液体从上部区域溢出(溢流);而增稠浆液则在底部流出(底流)。
经一级脱水后的石膏浆液固率达到50% 。
真空皮脱水机将已经经过水力旋流器一级脱水后的石膏浆液进一步脱水至含固率达到90%以上,输送存储于石膏库外运。
三、脱硫系统设备及常见问题1、烟气系统(1)、增压风机和GGH换热装置2006年以前设计一般装设有增压风机,主要作用是克服GGH(气——气换热器)装置的阻力,以及烟囱排烟温度降低造成的压力变化。
装设GGH装置的目的:原烟气经吸收塔脱硫后,净烟气温度降低至45—55℃,现象:一是,烟气低于酸露点温度引起吸收塔出口烟道及烟囱的结露腐蚀,二是,烟气自拔扩散能力下降引起酸性石膏雨。
GGH既利用原烟气热量通过换热提高吸收塔出口的排烟温度(可达到80度左右)避免结露腐蚀,提高烟囱自拔扩散能力(其结构原理类似于锅炉空气预热器)。
但是在实际应用中,通过GGH换热后并不能完全避免结露现象,反而因运行温度升高造成烟道和烟囱腐蚀加剧,同时,GGH装置的直接投资大(占FGD系统总投资的15%左右),后期维护工作量大,堵塞、渗漏现象突出,系统阻力增大,需增设增压风机,运行能耗和维护成本升高,在2006年以后的湿法脱硫设计中普遍放弃GGH换热设计。
(2)、烟气挡板烟气挡板常用新式:闸板式、单百叶窗式和双百叶窗式。
每片挡板设有金属密封元件(不锈钢密封条),挡板与密封空气系统相接并联动。
当挡板处于关闭位置时,挡板翼由钢制衬垫密封,在挡板内形成一个气路空间,密封空气充入并形成正压室,在挡板密封面形成空气幕,起到密封作用。
密封空气压力较挡板门外烟气压力高500Pa 以上,有较好的密封效果。
挡板门的防腐措施:主要依靠正确选取金属材料来保证。
建议烟气挡板门材质表:常见问题及维护:a.#9炉烟气挡板运行8个月出现挡板门密封衬层及固定螺栓腐蚀脱落现象,对密封性造成影响,严重时会引起原烟气经旁路挡板直接渗漏排放,出口硫份超标。
经材质检验挡板密封衬层及固定螺栓材质不合格,引起密封件变形脱落。
按照技术协议及工艺标准更换符合材质要求的部件。
b.日常维护应定期检查烟气挡板传动执行机构无卡涩、变形、松动现象,定期对传动蜗轮、蜗杆及摇臂进行检查,补充润滑脂防止缺油磨损和卡涩。
2、吸收塔系统主要设备喷淋吸收塔系统是湿法烟气脱硫系统的核心部分,主要布置有吸收塔本体、吸收塔搅拌设备、氧化空气分配装置、浆液循环机喷淋装置、喷嘴、除雾器等。
(1)、吸收塔本体吸收塔的作用是对烟气中的SO2等有害气体进行洗涤、吸收、氧化和石膏结晶于一体的塔类设备。
是湿法脱硫酸性物质反应的集中区域,因此防腐是吸收塔的一个重点。
吸收塔各部防腐主要措施:吸收塔入口烟道——碳钢+防腐涂层或耐酸钢吸收塔入口干湿界面——碳钢+防腐涂层或合金钢(如C276)吸收塔本体——碳钢+防腐涂层或碳钢衬胶、碳钢+镍基合金吸收塔出口至挡板处——碳钢+防腐涂层吸收塔出口挡板至烟囱——碳钢+防腐涂层或耐酸胶泥、耐酸砖、合金钢内衬烟囱——整体衬碳钢+耐酸砖或碳钢+防腐涂层、碳钢+合金钢内衬(如:钛板)、整体合金钢旁路烟道、挡板——混凝土+合金钢衬层(C276、1.4529)碳钢+防腐涂层常见问题及维护:吸收塔内是腐蚀最显著的部位,集中了酸的腐蚀、氯的腐蚀、高速流体及其携带的颗粒物的冲刷腐蚀等。
#9炉在8月份的脱硫停运检查中发现,吸收塔内氧化风管支撑钢梁部位存在玻璃鳞片脱落腐蚀现象,分析原因与氧化风管运行中存在流体引起的振动,钢梁结构设计强度低造成玻璃鳞片出现缝隙开裂和脱落。
因此吸收塔内的部件如横梁、支撑管等设计应满足足够的强度要求。
另外,例如出现的点状腐蚀,片状腐蚀,缝隙腐蚀,热膨胀引起的鳞片开裂,施工工艺造成的厚度不均匀、鼓泡翘起、非一次性施工接缝未按工艺标准进行打磨等,都易造成防腐失效,在检查中发现的问题应及时修复,防止面积扩大和塔壁出现穿孔漏浆。
搅拌器在运行中随着大量浆液的循环,叶轮后部的吸收塔壁板防腐层易受到含有颗粒物浆液的冲刷磨蚀,有的发电厂采取加装防护板减少冲刷;在2010年5月的#9吸收塔入口烟道检查中发现,由于干湿界面的气流扰动而积有约1米的硬质垢山,这些部位的防腐层也极易造成长期腐蚀,在清理中易造成机械损伤。
(2)吸收塔搅拌设备在吸收塔内下部浆液池中水平对称布置有4个搅拌器,其作用是将浆液和其中脱硫的有效物质,保持均匀的悬浮状态,促进鼓入的氧化空气充分反应。
搅拌器一般采用国外进口设备,所以应特别注意维护,防止机械密封出现漏浆,一旦漏浆必须停运脱硫进行吸收塔排浆检修。
日常维护中应注意搅拌器密封水不出现堵塞断流,及时清理搅拌器密封水滤网,定期检查搅拌器皮带不出现打滑传动失效现象,可通过搅拌器底部台板调节螺栓调节皮带的张紧度,皮带磨损应及时更换。
防止吸收塔搅拌不均匀影响石膏结晶,搅拌器叶片结垢和吸收塔底部部分区域浆液沉积结垢。
搅拌器损坏的主要因素是受腐蚀和磨损的共同影响,在停炉检修中应进行叶片腐蚀磨损情况检查,对叶片厚度进行采点测量收集对比数据,检查轴的直线度并防止出现弯曲变形。
(3)氧化空气分配装置吸收塔内布置有管网式强制氧化风管,强制氧化即向塔内的氧化反应区喷入空气,促进可溶性亚硫酸盐氧化成硫酸盐,把脱硫反应中生成的半水硫酸钙(CaSO3.1/2H2O)氧化为硫酸钙并结晶成石膏。
氧化空气系统结构特点:空气分配装置由氧化风机和氧化空气分配管路组成。
氧化风机一般采用2台罗茨风机并联运行(一运一备),由空气母管送至吸收塔,母管联箱上分配4路直管通向吸收塔内部,直管上开有小孔,氧化空气从小孔喷出并形成细小的空气泡,均匀分布到吸收塔反应浆池的断面,然后气泡靠浮力上升至浆池表面,上升过程中与浆液得以充分混合,实现高氧化率。
氧化空气各支管路还装设有工艺水冲洗管路,实现对氧化风管的定期冲洗,防止管路结垢堵塞。
常见问题及维护:氧化风管结垢——主要原因是由于设备倒换方式不合理和氧化风机掉闸造成氧化风管正压消失引起浆液返流,再次开启氧化风后,残留在风管内壁的浆液被氧化风干燥后结垢;因此,必须在氧化风机掉闸后及时对管路进行冲洗,清除管内残留浆液。
风管喷口堵塞——主要原因有两点,一是管道内的垢层在冲洗中剥离堵塞喷口,二是氧化风温长时间偏高(超过80度)引起喷口处浆液中的硫酸钙、亚硫酸钙过饱和结垢堵塞喷口。