当前位置:文档之家› 铝矿石成分对氧化铝生产的影响

铝矿石成分对氧化铝生产的影响

铝矿石成分对氧化铝生产的影响1.山西分公司铝土矿资源概况我国铝土矿资源较为丰富,主要集中在山西、河南、贵州、广西四省,总储量23.4亿吨,其中山西省储量为9.89亿吨,占总储量的42%。

截至2005年上半年,山西分公司已取得采矿权的铝土矿区10个,保有资源量7029万吨,其中:A/S 8以上高品位矿1248万吨(占17.76%);A/S 6.5-8的中等品位矿石2253万吨(占32.05%);A/S 6.5以下低品位矿3528万吨(占50.19%),高品位铝矿石较少,主要为中低品位的铝土矿,山西分公司2007年计划供矿:老系统拜耳法A/S≥9.0,AO≥67%,烧结法A/S6.5±0.3,AO≥62%,新系统A/S7.0±0.3 ,AO≥65%。

近年来,我国氧化铝企业为提高产量,降低成本,尽量提高供矿品位,而我国80%以上的铝土矿为中低品位,平均铝硅比仅为5.56,随着高品位铝土矿储量日渐减少,供矿品位不得不下降,结果引起产量减少,碱耗和矿耗指标明显升高,导致成本升高。

因此,需要合理选择供矿品位,深入研究不同铝土矿的性质特点及杂质对氧化铝生产的影响,最大程度地发挥不同品位铝土矿生产氧化铝的效益,有效利用有限的铝土矿资源,成为山西分公司氧化铝生产企业的迫切任务。

2.山西铝土矿化学成分及矿物组成铝土矿是一种组成复杂,化学成分变化很大的矿石。

铝土矿的化学成分主要为Al2O3、SiO2、Fe2O3、TiO2、H2O,次要成分有S、CaO、MgO、K2O、Na2O、CO2、有机质等,微量成分有Ga、Ge、Nb、Ta、TR、Co、Zr、V、P、Cr、Ni等,铝土矿的化学组成及矿物组成取决于铝土矿矿床的成因,根据铝土矿的成因主要有红土型铝土矿和沉积型铝土矿两大类。

红土型铝土矿是最主要的铝土矿矿床,约占铝土矿总储量的92%,以三水铝石为主。

沉积型铝土矿约占铝土矿总储量的8%,以一水硬铝石为主,山西铝土矿属一水硬铝石型,总体特征是高铝、高硅、低硫低铁、中低铝硅比,矿石质量差,加工难度大。

2006年山西分公司140万吨拜耳法实际供矿石化学成分平均为:AL2O3 SiO2 Fe2O3 TiO2 CaO A/S69.6 7.0 3.0 3.3 1.0 9.94AL2O3含量波动范围在65~72%之间,SiO2波动范围在6.0~7.5%之间,Fe2O3含量在2~4%,TiO2含量在3%左右。

矿石A/S11月份最低,为8.94,8月份最高,为10.26,波动范围高达1.32。

主要的矿物组成为:一水硬铝石,高岭石,锐钛矿,赤铁矿,方解石,石英。

2006年矿物组成含量平均为:一水硬铝石高岭石锐钛矿石英方解石赤铁矿76.2 14.2 3.2 1.1 1.15 2.92006年80万吨拜耳法矿石平均化学成份为:AL2O3 SiO2 Fe2O3 TiO2 CaO A/S66.8 8.9 3.5 3.0 1.5 7.50AL2O3含量波动范围在65~68%之间,SiO2波动范围在7.5~10%之间,Fe2O3含量在2~4%,TiO2含量在2.5~3%左右。

主要的矿物组成为:一水硬铝石,高岭石,锐钛矿,赤铁矿,方解石,石英。

矿物组成含量平均为:一水硬铝石高岭石锐钛矿石英赤铁矿72.6 17.2 3.0 1.2 3.5郑州轻研院2006年为80万吨石灰拜耳法矿石所做的物相组成为:一水硬铝石高岭石伊利石锐钛矿石英赤铁矿金红石方解石72.7 11.3 4.7 2.5 2.0 3.2 0.5 0.5从以上矿石物相组成来看,山西矿的主要物相为一水硬铝石和高岭石,两者含量之和超过90%,其余矿物含量较少,杂质硅主要以高岭石形态存在,矿物组成较为单一,但郑州轻研院分析中有少量伊利石存在。

3.铝土矿类型决定氧化铝的生产方法氧化铝生产过程就是从铝矿石中提取氧化铝使之与杂质分离的过程。

自然界中的铝矿石类型很多,同一类型的铝土矿中各种杂质的含量各有差异。

为了最经济地生产氧化铝,不同的铝矿需采用不同的生产方法。

拜耳法只适宜处理高铝硅比矿石,处理低铝硅比铝土矿是不经济的,这是由于矿石中的SiO2在溶出时转变为含水铝硅酸钠,需要消耗昂贵的苛性碱。

低品位铝矿石适宜采用碱—石灰烧结法,这时矿石的SiO2主要转变为原硅酸钙,而且使用和消耗的是廉价的碳酸钠。

特别是我国一水硬铝石型铝硅比低于4的矿石,采用烧结法生产更为有利。

碱—石灰烧结法虽可以处理低铝硅比铝土矿,但能耗高,产品质量差。

混联法可以兼有拜耳法和烧结法的优点,有利于充分利用我国中低品位矿石资源,但其工艺流程复杂,能耗较高。

4.铝土矿中成分及形态对氧化铝生产的影响4.1矿石粒度的影响孝义矿在常规的破碎方式下,具有一定的选择性解理特性,其中粗颗粒矿物的铝硅比明显高于细颗粒矿物的铝硅比,这与组成矿物一水硬铝石、高岭石的物理性质一致,即由于一水硬铝石和高岭石的硬度不同,矿物在相同的作用力方式下,高岭石矿物更容易被破碎进入细粒级产物当中,造成细粒级矿物的铝硅比明显低于粗粒级矿物的铝硅比。

我们从一车间矿石堆场取回孝义高铝矿进行了不同粒度的分析,将其分为细中粗三个粒级,其中,细粒级在小于0.6mm,中粒级5~10mm,粗粒级20~40mm,分析结果如下:中粒矿石5~10mm 8.04 1.46 66.3 1 8.25粗粒矿石20~40mm 3.39 0.87 75.6 0.7 22.3分析结果表明,硬度大的大颗粒的矿石氧化铝含量高,硅含量低,一水硬铝石含量大,A/S高,达到22.3,细颗粒的矿石硅含量较高,A/S低,只有6.59,高岭石的硬度较小,可以看出,粒度越大,A/S 的差值越大。

因此如果矿石均化不好,很容易使矿石的A/S产生一定波动,利用有用矿物与杂质硬度的不同的特点,可以进行筛选,选出一部分高品位的矿石。

目前,我厂进厂矿石粒度在20mm以下,粒度偏大会增加磨矿的负荷,使磨机的产能受到限制,磨矿效率下降,能耗升高,磨矿产品的均匀性变差,对烧结法直接影响料浆细度和烧结熟料的质量。

对拜耳法来说,矿石的粒度越细,表面积越大,溶出速率增加,氧化铝的溶出率提高,不同粒级的矿石溶出效果不同。

下图为不同粒度的山西矿溶出率变化曲线。

从右图中可以看出,各粒级在不同时间的溶出率有明显的差别。

粒级越粗,短时间内效果越差。

由此可见,矿石粒度对氧化铝生产的重要性,为了保证矿石溶出粒级要求,提高磨矿效率,可采用多破少磨的方法降低入磨矿石粒度,提高磨机的产能和产品粒度的均匀性。

设备名称电机功率设计产能电耗原料磨1000KW 50t/h 20kwh/t格子磨1250KW 55 t/h 22.7kwh/t圆锥破碎机280KW 200~280 t/h Max 1.4kwh/t 资料表明,如矿石粒度由-20mm预破至-10mm,需增加300kwh圆锥破碎机一台,可将磨机实际产能由70t/h提高到100t/h,总电耗相应的由17.8降到14.09kwh/t。

对优化磨矿工艺,降低生产能耗起到了积极的作用。

如矿山能直接将矿石粒度破碎至要求粒度,降低的能耗幅度要更大。

经实际考察,要想在原料磨和格子磨入口处添加破碎机,由于自身重量和用电负荷不能承受,添加很困难,是否考虑以后再新建磨机时,在磨头设计添加破碎机,在翻车机后添加破碎机问题较大,一个是很难找到合适的地方,二是破碎飞扬损失会很大,需要更进一步详细的论证。

4.2矿石类型的影响我国一水硬铝石型铝土矿比三水铝石和一水软铝石的氧化铝生产能耗高,主要因为一水硬铝石矿结构致密,一水硬铝石与脉石矿物嵌布紧密,包裹程度较大,与溶液的接触条件较差,很难溶出。

据统计,我厂氧化铝生产综合能耗为33.2GJ/t-AO,而澳大利亚宾加拉厂采用三水铝石矿生产氧化铝综合能耗仅为11.17 GJ/t-AO,希腊圣.尼古拉厂采用一水软铝石矿生产综合能耗14.59 GJ/t-AO。

4.3.矿石中AL2O3含量的影响Al2O3含量越高,对降低铝土矿消耗越有利,我国铝土矿以一水硬铝石居多,但氧化铝含量较高,一般在60-70%,较国外三水铝石矿的消耗小。

对拜耳法来说,矿石Al2O3含量提高1%,铝土矿消耗将降低0.02t/t-AO,流程中的杂质含量相对降低,赤泥量降低,碱耗、能耗降低,对生产的正常运行,指标的优化,起到良好的作用。

对烧结法来说,熟料中Al2O3含量越高,则熟料折合比越低,赤泥量可以减少,设备的负荷可以减轻,产能相应的提高。

但生料中A/S增大时,相对的Fe2O3的含量减少,因此熟料中相应的Na2O·Fe2O3和2CaO·SiO2也减少,导致烧成温度升高,易出现欠烧料。

反之,当A/S降低,物料虽然易烧,但烧成范围缩小,熟料窑操作不好控制,还会造成熟料窑烧结带结圈,下料口堵塞等生产故障。

因此,,在3.0~5.0范围内,熟料铝硅比偏高控制较好。

混联法氧化铝生产中,生料的铝硅比不可能太高。

因为拜耳法赤泥铝硅比只有2.0左右。

如果生料铝硅比太高,则处理一吨拜耳法赤泥要配入大量的矿石。

这样会使混联法生产氧化铝的优越性显著降低。

4.4.铝土矿中杂质SiO2的影响在碱法生产氧化铝的过程中,硅是铝土矿中最有害的杂质,溶出时生成铝硅酸钠,引起铝的损失,增加了碱耗。

资料表明:用拜耳法生产氧化铝,矿石中SiO2每增加1%,每吨矿石多消耗氢氧化钠6.6公斤,氧化铝8.5公斤。

SiO2主要以高岭石状态存在与碱液在70~95℃下就可反应,作用的速度大于一水硬铝石,生成钠硅渣(Na2O.Al2O3.1.7SiO2.2H2O)进入赤泥中,SiO2含量越高,造成Na2OK和Al2O3的损失越大,拜尔法末次洗涤赤泥的N/S约为0.4-0.5,A/S达到1.3以上,即1kg SiO2消耗0.4-0.5 kgNa2O,1kg SiO2消耗1.3kg以上的氧化铝,使氧化铝的回收率降低,产生的赤泥量也相应增大,对赤泥分离洗涤造成不良影响,并在管道和设备器壁上产生结疤,降低传热效果,妨碍生产正常进行,残留在铝酸钠溶液中的SiO2在分解时会随同氢氧化铝一起析出,影响产品质量。

因此,生产过程中要控制和减少SiO2的有害作用在烧结法系统,,二氧化硅主要以原硅酸钙(β-CaO.SiO2)的形式进入赤泥而外排,当SiO2含量升高时,配钙量也增加,资料表明,矿石中SiO2 每增加1%,则多消耗石灰石3.5公斤,增大了赤泥量,对分离、洗涤系统造成一定影响,二次反应程度加大,氧化铝溶出率下降。

矿石中以伊利石(KAI2[(SI·AI)4O10](OH)2·nH2O)形态存在的SiO2含量很少,在180℃以上才与碱液发生明显的反应,难以用预脱硅的方法除去,构成了对预热器传热效率的严重危害,应该了解其溶解性质。

相关主题