教师用有界磁场问题分类点拨一、带电粒子在圆形磁场中的运动例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O'P 的长度和电子通过磁场所用的时间.解析 :电子所受重力不计。
它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。
圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图2所示,连结OB,∵△OAO ″≌△O BO″,又O A⊥O″A ,故OB ⊥O″B,由于原有BP ⊥O ″B ,可见O、B、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角三角形OO 'P 中,O 'P =(L +r )tan θ,而)2(tan 1)2tan(2tan 2θθθ-=,Rr =)2tan(θ,所以求得R 后就可以求出O'P 了,电子经过磁场的时间可用t =VRV AB θ=来求得。
由R V mBeV 2=得R=θtan )(.r L OP eBmV+= mV eBr R r ==)2tan(θ,2222222)2(tan 1)2tan(2tan rB e V m eBrmV -=-=θθθ 22222,)(2tan )(r B e V m eBrmVr L r L P O -+=+=θ, )2arctan(22222rB e V m eBrmV-=θ )2arctan(22222rB e V m eBrmV eB m V R t -==θ 例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O,磁感强度T B 332.0=,方向垂直纸面向里.在O处有一放射源S,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.MNO ,图1MNO ,图2解析:设粒子在洛仑兹力作用下的轨道半径为R ,由R v m Bqv 2= 得cm m m Bq mv R 2020.0102.3332.0102.31064.619627==⨯⨯⨯⨯⨯==--虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线. 由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.如图2,作出磁偏转角ϕ及对应轨道圆心O ',据几何关系得212sin==R r ϕ,得060=ϕ,即α粒子穿过磁场空间的最大偏转角为060. 二、带电粒子在半无界磁场中的运动例3、(1999年高考试题)如图3中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是M N上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔.解析:(1) 粒子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为R,则据牛顿第二定律可得:R v m Bqv 2= ,解得BqmvR =(2)如图3所示,以OP 为弦的可以画出两个半径相同的圆,分别表示在P 点相遇的两个粒子的轨道,圆心分别为O 1和O 2,在O 处两个圆的切线分别表示两个粒子的射入方向,它们之间的夹角为α,由几何关系知∠PO 1Q1=∠PO 2Q 2=α从O 点射入到相遇,粒子在1的路径为半个圆周加P Q 1弧长等于αR ;粒子在2的路径为半个圆周减P Q 2弧长等于αR.粒子1的运动时间 t 1=21T +v R α 粒子2的运动时间 t 2=21T -vR αM N. . . . . .. . . . . .两个粒子射入的时间间隔△t =t 1-t 2=2vR α 由几何关系得Rcos21α=21op =21L,解得:α=2arccos RL 2 故△t =Bq m 4.ar c cos mvLBq2 例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解析:带电粒子在磁场中运动时有R v m Bqv 2=,则cm m Bq mv R 101.0106.1100.1100.1106.1182425==⨯⨯⨯⨯⨯⨯==---. 如图15所示,当带电粒子打到y 轴上方的A 点与P连线正好为其圆轨迹的直径时,A点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,cm R AP 202==,则cm OP AP OA 31022=-=.当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-. 三、带电粒子在长方形磁场中的运动例5、如图5,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.图4o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯•图5⨯⨯⨯⨯⨯⨯⨯⨯→•d Lvcm /解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边缘(图4中轨迹1),则其圆轨迹半径为41d R =,又由1211R v m Bqv =得m Bqdv 41=,则粒子入射速率小于1v 时可不打在板上.设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),由图可得22222)2(dR L R -+=,则其圆轨迹半径为d d L R 44222+=,又由2222R v mBqv =得md d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板上.综上,要粒子不打在板上,其入射速率应满足:mBqdv 4<或md d L Bq v 4)4(22+>.例6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图4所示,磁感强度为B,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A.使粒子的速度V <BqL /4m ;B.使粒子的速度V >5BqL /4m;C.使粒子的速度V >BqL /m ;D.使粒子速度Bq L/4m <V <5Bq L/4m解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r1时粒子可以从极板右边穿出,而半径小于某值r 2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r的最小值r 1以及粒子在左边穿出时r 的最大值r2,由几何知识得:粒子擦着板从右边穿出时,圆心在O 点,有:r12=L2+(r1-L /2)2得r 1=5L/4,又由于r 1=mV 1/Bq 得V 1=5BqL /4m ,∴V >5BqL /4m时粒子能从右边穿出。
粒子擦着上板从左边穿出时,圆心在O'点,有r 2=L /4,又由r2=mV 2/Bq =L /4得V 2=BqL /4m ∴V 2<BqL /4m 时粒子能从左边穿出。
综上可得正确答案是A 、B 。
四、带电粒子在“三角形磁场区域”中的运动例7、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从ACl l r 1 O V+q V图6 图7D•⨯⨯⨯⨯⨯⨯C图4⨯⨯⨯⨯⨯⨯⨯⨯•d L1v ••2R 1o 2o 212v间什么范围内射出.解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC 边相切于E 点. 由图知,在E AO 1∆中,11R E O =,113R a A O -=,由AO E O 11030cos =得11323R a R -=,解得aR )32(31-=,则a R a AO AE )332(23211-=-==. 又由1211R vm Bqv =得m aqB m BqR v )32(311-==,则要粒子能从AC 间离开磁场,其速率应大于1v .如图7所示,设粒子速率为2v 时,其圆轨迹正好与B C边相切于F点,与AC 相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32===.又由2222R v m Bqv =得m aqBv 32=,则要粒子能从AC 间离开磁场,其速率应小于等于2v .综上,要粒子能从AC 间离开磁场,粒子速率应满足maqBv m aqB3)32(3≤<-. 粒子从距A 点a a 3~)332(-的EG 间射出.五、带电粒子在“宽度一定的无限长磁场区域”中的运动例8、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P点正上方B板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿PQ 方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表图6DB1o A B示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由rv m Bev 2=可得Bemv r m m =,代入数据解得d m r m 21022=⨯=-. 该电子运动轨迹圆心在A 板上H处,恰能击中B 板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B 板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B 板MN 区域和A 板PH 区域.在∆MFH 中,有d d d MF HM FH 3)2(2222-=-=,s m d PF QM /1068.2)32(3-⨯=-==, m d QN 2101-⨯==,m d PH 21022-⨯==.电子能击中B板Q 点右侧与Q 点相距m m 23101~1068.2--⨯⨯的范围.电子能击中A 板P 点右侧与P点相距m 2102~0-⨯的范围.(2)如图13所示,要使P 点发出的电子能击中Q 点,则有Be mv r =,2sin dr =θ. 解得6108sin ⨯=θv .v 取最大速度s m /102.37⨯时,有41sin =θ,41arcsin min =θ;v 取最小速度时有2max πθ=,s m v /1086min ⨯=.所以电子速度与θ之间应满足6108sin ⨯=θv ,且]2,41[arcsin πθ∈,]/102.3,/108[76s m s m v ⨯⨯∈六、带电粒子在相反方向的两个有界磁场中的运动例9、如图9所示,空间分布着有理想边界的匀强电场和匀强磁场.左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程.求:(1) 中间磁场区域的宽度d ;(2) 带电粒子从O 点开始运动到第一次回到O点所用时间t.BB图9图13P图14o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯•解析:(1)带电粒子在电场中加速,由动能定理,可得: 221mV qEL = 带电粒子在磁场中偏转,由牛顿第二定律,可得:RV m BqV 2=由以上两式,可得qmELB R 21=.可见在两磁场区粒子运动半径相同,如图11所示,三段圆弧的圆心组成的三角形ΔO1O 2O 3是等边三角形,其边长为2R.所以中间磁场区域的宽度为qmELB R d 62160sin 0==(2)在电场中qEmLqE mV a V t 22221===, 在中间磁场中运动时间qB mT t 3232π==在右侧磁场中运动时间qBm T t 35653π==, 则粒子第一次回到O点的所用时间为qBmqE mL t t t t 3722321π+=++=. 七、带电粒子在环形或有孔磁场中的运动例10、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。