当前位置:
文档之家› 清华大学 辐射安全与防护培训-辐射探测器
清华大学 辐射安全与防护培训-辐射探测器
二. 闪烁探测器
利用辐射在某些物质中产生的闪光,产生荧光 光子来探测电离辐射的探测器。
荧光 光子 光电倍增管 反射层 窗 (打拿极) 分压器
前置放大器
多道或单道 高压
闪烁体
光电子 光阴极
阳极
管座
暗盒
.
闪烁探测器的工作过程:
(1) 辐射射入闪烁体使闪烁体原子电离或 激发,受激原子退激而发出波长在可见光 波段的荧光。 (2) 荧光光子被收集到光电倍增管(PMT)的 光阴极,通过光电效应打出光电子。 (3) 电子运动并倍增,并在阳极输出回路 输出信号。
核辐射引起气体的电离:入射带电粒子 通过气体介质时,使气体分子、原子电离和 激发,并在通过的路径周围生成大量离子对。
.
各种气体探测器
.
电离能W:带电粒子在气体中产生一电 子离子对所需的平均能量。
若入射粒子的能量为E0,当其能量全部 损失在气体介质中时,产生的平均离子对 数为:
NE0 W
对不同的气体, W大约为30eV。
E入射粒子损耗在闪烁体中的能量。
以NaI(Tl)为例:
对β粒子 Cnp 13%;对α粒子 Cnp2.6%
.
光能产额:
Y ph
n ph E
光子数MeV
nph为产生的闪烁光子总数。
发光效率与光能产额的关系:
YphnE phE hvphE 1C hn vp
以NaI(Tl)为例
对1MeV的β粒子,发射光子平均能量 h 3eV
Yph3 0e .1V 34.3 . 140光
子数 MeV
3) 发光衰减时间
受激过程大约 1091011Sec 退激过程及闪烁体发光过程按指数规律
对于大多数无机晶体,t时刻单位时间发 射光子数:
ntn0et nphet
τ为发光衰减时间,即发光强度降为1/e所
需时间。
.
.
(二). 光电倍增管
1. PMT的结构——光电倍增管为电真空器件。
3) 气体闪烁体:Ar、Xe等。
.
2. 闪烁体的物理特性 1) 发射光谱
特点:发射光谱为连续谱。各种闪烁体都存在 一个最强波长;要注意发射光谱与光电倍增管 光阴极的光谱响应是否匹配。
.
2) 发光效率与光能产额
指闪烁体将所吸收的射线能量转化为光的比例。
发光效率:Cnp
Eph E
10% 0
Eph闪烁体发射光子的总能量;
需要保证气体的成分和压力,所以一 般电离室均需要一个密封外壳将电极系 统包起来。
工作气体有确定的组成,一般为氩气 (Ar ) 加少量多原子分子气体CH4。
气体压力:从10-1~10大气压。
.
气体探测器的圆柱型电离室结构
高压极
灵敏体积
负载电阻
输出信号:
Ne h ,
C0
C0C1C' C入
分别为极板电容、分布电容和放大器输 入电容.。
常用的辐射探测器按探测介质类型及作用机制 主要分为:
气体探测器;
闪烁探测器;
半导体探测器。 .
一. 气体探测器
气体探测器是以气体为工作介质,由入 射粒子在其中产生的电离效应引起输出电信 号的探测器。由于产生信号的工作机制不同, 气体电离探测器主要有电离室、正比计数器、 G-M计数器等类型。它们均有各自的特点以 及相应的适用领域。
当在两电极上所加电压不同时,就造 成气体探测器的不同工作状态。
随着工作电压的升高,在中央阳极附近 很小的区域内,电场强度足够强,以至电 子在外电场的加速作用下,能发生新的碰 撞电离,我们称之为气体放大或雪崩过程。
气体电离探测器主要有电离室、正比 计数器、G-M计数器等类型。
.
E1
E2
E3
.
I : 复合区 II : 饱和区 III : 正比区
1) PMT的主要部件和工作原理
半透明光阴极 光电子轨迹
入射光
真空壳
聚焦电极. 打拿极
阳极
2) PMT的类型
(1) 外观的不同
(2) 根据光阴极形式
.
(3) 根据电子倍增系统 聚焦型
非聚焦型
具有较快的响应 时间,用于时间 测量或需要响应 时间快的场合。
电子倍增系数较 大,多用于能谱 测量系统。
直线结构 环状结构
NNA IV: 有限正比区
N N V: G-M工作区
VI: 连续放电区
工作区 输出信号 域
用途
电离室
正比计数 器
G-M 计数管
饱和区
正比区
G-M工 作区
h Ee W C0
h Ee A W C0
形成正离子 鞘,与入射 粒子能量无
关。
.
计数及测 量入射粒
子能量
计数及测 量入射粒
子能量
仅用作计 数
.
离子和电子在外加电场中的漂移
离子和电子除了与作热运动的气体分 子碰撞而杂乱运动和因空间分布不均匀造 成的扩散运动外,还有由于外加电场的作 用沿电场方向定向漂移。
这种运动称为“漂移运动”,定向运 动的速度为“漂移速度”。它是形成输出 信号的基本过程。
.
工作气体:
气体探测器的工作介质为气体,工作 气体充满电离室内部空间;
.
射线与物质相互作用的分类
Charged Particulate Radiations
Heavy charged particles
,p,d,T, f
Fast electrons
e
Uncharged Radiations
Neutrons
X-rays and rays
.
辐射探测的基本过程:
➢ 辐射粒子射入探测器的灵敏体积; ➢ 入射粒子通过电离、激发等效应而在探测器中沉积 能量; ➢ 探测器通过各种机制将沉积能量转换成某种形式的 输出信号。 ➢对非带电粒子通过次级效应产生次电子或重带电粒 子,实现能量的沉积。
闪烁探测器可用类 1) 无机闪烁体:
无机晶体(掺杂) N T a ,C lI T s ,Z l IA n S g 玻璃体 L2 iO 2S2 iC O e(锂玻璃)
纯晶体 Bi4Ge3O12 BGO
2) 有机闪烁体:有机晶体——蒽晶体等; 有机液体闪烁体及塑料闪烁体.
第五节 辐射探测及常用辐射探测器
.
为什么需要辐射探测器?
对于辐射是不能感知的,因此人们必须借 助于辐射探测器探测各种辐射,给出辐射 的类型、强度(数量)、能量及时间等特性。 即对辐射进行测量。
辐射探测器的定义:利用辐射在气体、 液体或固体中引起的电离、激发效应或 其它物理、化学变化进行辐射探测的器 件称为辐射探测器。
百叶窗结构 盒栅型结构
.
2. PMT主要性能 1) 光阴极的光谱响应
光阴极受到光照后,发射光电子的概率是 入射光波长的函数,称作“光谱响应”。