当前位置:文档之家› 地震波时频特征及与结构地震响应的关系_樊剑

地震波时频特征及与结构地震响应的关系_樊剑


∑ S[
f

]
=
N −1
s[t ] ⋅
t=0
w[
f


t]⋅
exp
⎛ ⎜⎝

j2π N
ft
⎞ ⎟⎠
(4)
∑ ∑ s[t] =
1 N
f
N /2−1 =−N /2

N −1

τ =0
S[
f

]

exp
⎛ ⎜⎝
j2π N
ft ⎞ ⎟⎠
(5)
式中:N 为信号采样点总数;f、t 为离散的整数频
率和时间,它们所对应的真实频率和时间为
9.07 0.953 16.28 7.58 0.984 14.53 8.44 0.995 15.49
9.57 0.987 15.09 7.58 0.989 15.03 11.65 0.992 15.68
6.45 0.975 19.30 7.58 0.994 15.95 12.04 0.988 16.81
本文首先推导了离散 S 变换的基本算法,定义 了反映地震波时频特性的时变幅值谱和时变能量 谱;基于 S 变换提出了把原始波调整成具有目标功 率谱或目标反应谱的新方法;分析了 El_centro 波、 Northridge 波、Kobe 波和人工合成波以及经调整后 的各地震波的时频特征;对地震波的时变谱进行特 征提取,提出地震波的时频特征谱这一新概念,时 频特征谱能反映地震波能量在时频空间中的集中 程度;通过相关性分析表明,地震波的时频特征谱 与结构的弹性加速度反应谱具有很好的线性相关 性;最后建立了地震波的时频特征谱与弹性加速度 反应谱之间的近似转换关系式,此转换关系可作为 合成具有目标反应谱的人工地震波使用。
称为时变相位谱; ⊗ 表示矩阵对应元素相乘。 与谱图定义相似,可以定义基于 S 变换的时变
能量谱:
Ps[ f ,τ ] = | S[ f ,τ ] |2
(7)
2 地震波的调整
选 择 Northridge-1994(Sylmar) 波 、 Kobe-1995
(Takarazuka)波、Imperial Valley-1940(El_centro)波和
注:E 表示地震波总能量,ρ 表示相关系数,C为系数;N 波表示 Northridge 波,K 波表示 Kobe 波,El 波表示 El_centro 波。
一致),定义地震波 s(t)的总能量 E 为:
∫ E = 〈s(t), s(t)〉 = tp a2(t)dt 0
(8)
式中 tp 为地震波的总持续时间(取 20s)。 调幅后 4 条地震波的总能量见表 1,图 1 分别
给出了 4 条调幅波的时程图、功率谱图以及由式(7)
计算的时变谱图。时程图反映了地震波的能量在时
第 27 卷第 6 期 Vol.27 No.6
工程力学
2010 年 6 月 June 2010
ENGINEERING MECHANICS
98
文章编号:1000-4750(2010)06-0098-08
地震波时频特征及与结构地震响应的关系
*樊 剑,吕 超,张 辉
(华中科技大学土木工程与力学学院,武汉 430074)
———————————————
收稿日期:2009-12-17;修改日期:2009-08-10 基金项目:国家自然科学基金项目(50778079);湖北省自然科学基金项目(2006ABA067) 作者简介:*樊剑(1969―),男,湖南宁远人,副教授,博士,从事结构隔震研究(E-mail: fan-jian@);
RELATION BETWEEN TIME-FREQUENCY CHARACTERISTIC OF EARTHQUAKE GROUND MOTIONS AND STRUCTURAL EARTHQUAKE
RESPONSES
*FAN Jian , LU Chao , ZHANG Hui
(Department of Civil Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)
1 S 变换及地震波时变谱估计
设地震波的时程为 s(t),则它的 S 变换定义 为[9―10]:
+∞
∫ S( f ,τ ) = s(t)w( f ,τ − t) ⋅ exp(− j2π ft)dt (1) −∞
式中:f 为频率;τ 为时窗函数的中心; w( f ,τ − t)
为窗口函数,它可取如下的形式:
frequency characteristic spectrum; structural earthquake responses
地震波是强非平稳过程,这种非平稳特性对线 年来,国内外一些学者开始利用现代时频分析工具 性或非线性结构地震响应均有显著的影响[1―2]。近 (如小波变换、Hilbert-Huang 变换、S 变换以及自适
度;对于能量最大的 El_centro 波,虽然有很大的总
能量,但其在时频空间中的能量密度的最大值却比
Northridge 波小很多,说明与 Northridge 波相比
100
工程力学
El_centro 波的能量在时频空间中的分布较均匀,能 量集中在[1.5,2.5]Hz 和[1,3]s、[2,2.5]Hz 和[4,6]s、 [1,2]Hz 和[11,13]s 等时频域内;人工波是这 4 条地 震波在时频空间中能量分布最均匀的 1 条,其能量 较均匀地分布在[0.5,4]Hz 和[0,12]s 这较大的时频范
域内的分布特征,功率谱图反映地震波能量在频域
的分布特征,而时变谱可反映地震波能量在时频空
间中的分布特征。具有相同幅值的 Northridge 波虽
然 总 能 量 最 小 , 但 在 时 频 空 间 中 的 [2,3]Hz 和
[3.5,4.5]s 窄小范围中有很大的能量密度,在低频段
的[0.5,1]Hz 和[2,9]s 时频空间中也有较大的能量密
一条具有给定功率谱密度函数的人工波作为研究
对象,为研究不同地震波的时频特征对结构地震响
应的影响,分别对这 4 条波作如下调整。
2.1 具有相等峰值加速度的地震波
将地震记录的加速度按比例放大或缩小,使其
加速度等于事先确定的地震加速度峰值(本文将 4
条地震波的峰值调为 3.41m/s2 与 El_centro 波的峰值
w( f ,τ
−t) =
|
f
|
⎛ − f 2 (τ exp ⎜
− t)2
⎞ ⎟
(2)
2π ⎝ 2 ⎠
基于傅里叶反变换的 S 逆变换:
∫ (∫ ) +∞ +∞
s(t) =
S( f ,τ )dτ ⋅ exp( j2πft)d f (3)
−∞ −∞
在实际计算中,式(1)、式(3)通常是转化成如
下的离散形式:
吕超(1982―),男,河南信阳人,硕士生,从事结构隔震研究(E-mail: luchao@); 张辉(1983―),男,河南南阳人,硕士生,从事结构隔震研究(E-mail: zhanghui@).
工程力学
99
应 chirplet 变换)研究反映地震波能量在时频域变化 规律的时变谱特性。具有代表性的有 Spanos [3]等利 用不同谐小波函数对地震波的时变谱进行估计,他 们分别采用二进制谐小波、一般谐小波及滤波谐小 波变换对地震波进行分解,根据小波函数在时频域 内的正交性得到时变谱与小波系数之间的系数表 达式;近年来,他们还利用自适应 chirplet 变换研 究 地 震 波 的 时 频 特 性 [4] ; Wen[5] 等 对 非 平 稳 波 作 Hilbert-Huang 变换,并定义了 Hilbert 幅值谱,Hilbert 能量谱和 Hilbert 边际谱来描述非平稳地震波的时 频局部特性;在国内,曹晖、赖明[6]等对多种时变 谱估计方法作了综述;樊剑等[7]根据连续小波变换 的 Parsval 公式,推导了小波时变谱与连续小波系 数之间的关系,并把近年来提出的广义 S 变换用于 地震波的时变谱估计[8]。
Abstract: The formulas of discrete S-transform are derived , and the time-varying amplitude spectrum and time varying energy spectrum based on S-transform are given. A new procedure is presented to generate an accelerograms whose elastic response spectrum is compatible with a target spectrum by using actual earthquake records as parents. The time-frequency characteristics of Northridge wave, El-centro wave, Kobe wave and an artificial wave are analyzed through numerical example. The time-frequency characteristic spectrum which reflects the centralized degree of energy of earthquake ground motion is extracted from the time varying energy spectrum. It is showed that the time-frequency characteristic spectrum is related linearly to the elastic acceleration response spectrum. Finally, the approximate transformation equation between the time-frequency characteristic spectrum and the elastic acceleration response spectrum is established. Key words: S-transform; time-varying spectrum; non-stationary earthquake ground motions; the time-
相关主题