题1:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。
问该模式识别问题所需判别函数的最少数目是多少?答:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。
再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。
故共需要4+21=25个判别函数。
题2:一个三类问题,其判别函数如下:d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-11.设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。
2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。
绘出其判别界面和多类情况2的区域。
3.设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。
答:三种情况分别如下图所示:1.2.3.题3:两类模式,每类包括5个3维不同的模式,且良好分布。
如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。
)答:(1)若是线性可分的,则权向量至少需要14N n =+=个系数分量; (2)若要建立二次的多项式判别函数,则至少需要5!102!3!N ==个系数分量。
题4:用感知器算法求下列模式分类的解向量w : ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T}解:将属于2w 的训练样本乘以(1)-,并写成增广向量的形式x1=[0 0 0 1]',x2=[1 0 0 1]',x3=[1 0 1 1]',x4=[1 1 0 1]';x5=[0 0 -1 -1]',x6=[0 -1 -1 -1]',x7=[0 -1 0 -1]',x8=[-1 -1 -1 -1]';迭代选取1C =,(1)(0,0,0,0)w '=,则迭代过程中权向量w 变化如下:(2)(0 0 0 1)w '=;(3)(0 0 -1 0)w '=;(4)(0 -1 -1 -1)w '=;(5)(0 -1 -1 0)w '=;(6)(1 -1 -1 1)w '=;(7)(1 -1 -2 0)w '=;(8)(1 -1 -2 1)w '=;(9)(2 -1 -1 2)w '=; (10)(2 -1 -2 1)w '=;(11)(2 -2 -2 0)w '=;(12)(2 -2 -2 1)w '=;收敛所以最终得到解向量(2 -2 -2 1)w '=,相应的判别函数为123()2221d x x x x =--+。
题5:用多类感知器算法求下列模式的判别函数: ω1: (-1 -1)T ,ω2: (0 0)T ,ω3: (1 1)T解:采用一般化的感知器算法,将模式样本写成增广形式,即1231011,0,1111x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取初始值123000w w w ⎛⎫⎪=== ⎪ ⎪⎝⎭,取1C =,则有第一次迭代:以1x 为训练样本,123(1)(1)(1)0d d d ===,故123111(2)1,(2)1,(2)1111w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭第二次迭代:以2x 为训练样本,123(2)1,(2)1,(2)1d d d ==-=-,故123111(3)1,(3)1,(3)1002w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭第三次迭代:以3x 为训练样本,123(3)2,(3)2,(3)0d d d =-==,故123102(4)1,(4)0,(4)2011w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭第四次迭代:以1x 为训练样本,123(4)2,(4)1,(4)5d d d ==-=-,故112233(5)(4),(5)(4),(5)(4)w w w w w w ===第五次迭代:以2x 为训练样本,123(5)0,(5)1,(5)1d d d ==-=-,故123102(6)1,(6)0,(6)2102w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭第六次迭代:以3x 为训练样本,123(6)3,(6)0,(6)2d d d =-==,故112233(7)(6),(7)(6),(7)(6)w w w w w w ===第七次迭代:以1x 为训练样本,123(7)1,(7)0,(7)6d d d ===-,故112233(8)(7),(8)(7),(8)(7)w w w w w w ===第八次迭代:以2x 为训练样本,123(8)1,(8)0,(8)2d d d =-==-,故112233(9)(8),(9)(8),(9)(8)w w w w w w ===由于第六、七、八次迭代中对312,,x x x 均以正确分类,故权向量的解为:1231021,0,2102w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,可得三个判别函数为:112231210222d x x d d x x =---==+-题6: 采用梯度法和准则函数2(,,)21()8t tw x b J w x b w x b x⎡⎤=---⎣⎦,式中实数b 〉0,试导出两类模式的分类算法。
解:)]sgn(*[*|]|)[(||||412b x w x x b x w b x w x w J tt t -----=∂∂ 其中:⎩⎨⎧≤-->-=-0,10,1)sgn(b x w b x w b x w tt t得迭代式:2(1)()[(())|()|]*[*sgn(())]4||||t t tC w k w k w k x b w k x b x x w k x b x +=+----- 200(1)()()t t t w x b w k w k C b w x x w x b x ⎧->⎪+=+-⎨-≤⎪⎩题7:用LMSE 算法求下列模式的解向量: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T }ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T }解:写出模式的增广矩阵X :00011001101111010011011101011111X ⎛⎫⎪ ⎪ ⎪⎪⎪= ⎪--⎪--- ⎪ ⎪-- ⎪ ⎪----⎝⎭#11000110010111000110110111000100010111110100010111()()001011010011001011011111111101111111111101011111t tX X X X --⎛⎫⎪ ⎪⎪--⎛⎫⎛⎫⎪ ⎪ ⎪------ ⎪⎪ ⎪== ⎪ ⎪ ⎪--------⎪ ⎪ ⎪----------- ⎪⎝⎭⎝⎭⎪-- ⎪ ⎪----⎝⎭=121121212(2)11222224-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭01110001000101110010110111111111-⎛⎫ ⎪--- ⎪⎪--- ⎪----⎝⎭ 200102011002141112-⎛⎫ ⎪- ⎪=⎪- ⎪---⎝⎭01110001000101110010110111111111-⎛⎫⎪--- ⎪⎪--- ⎪----⎝⎭1111111111111111111111111421001011--⎛⎫ ⎪------ ⎪=⎪------ ⎪--⎝⎭取(1)(11111111)t=b 和1C =第一次迭代:#(1)(1)(1110.5)tX ==--w b(1)(1)(1)(0.50.50.50.50.50.50.50.5)t X =-=------e w b#(2)(1)(1)(1.5 1.5 1.50.75)t CX =+=--w w e (2)(1)[(1)(1)](12111211)t C =++=b b e e第二次迭代:e w b=-=------X(2)(2)(2)(0.250.250.250.250.250.250.250.25)t#w w e(3)(2)(2)(1.75 1.75 1.750.875)t=+=--CXb b e e=++=(3)(2)[(2)(2)](1 2.5111 2.511)tC第三次迭代:=-=------e w bX(3)(3)(3)(0.1250.1250.1250.1250.1250.1250.1250.125)t#w w e=+=--(4)(3)(3)(1.875 1.875 1.8750.9375)tCX=++=b b e e(4)(3)[(3)(3)](1 2.75111 2.7511)tC第四次迭代:e w b=-=------(4)(4)(4)(0.06250.06250.06250.06250.06250.06250.06250.0625)tX#(5)(4)(4)(1.9375 1.9375 1.93750.9688)tw w e=+=--CXb b e e=++=C(5)(4)[(4)(4)](1 2.875111 2.87511)t第五次迭代:=-=------e w bX(5)(5)(5)(0.03130.03130.03130.03130.03130.03130.03130.0313)t#w w e=+=--CX(6)(5)(5)(1.9688 1.9688 1.96880.9844)tb b e e=++=(6)(5)[(5)(5)](1 2.9375111 2.937511)tC第六次迭代:(6)(6)(6)(0.01560.01560.01560.01560.01560.01560.01560.0156)t=-=------e w bX#w w e=+=--(7)(6)(6)(1.9844 1.9844 1.98440.9922)tCX=++=b b e eC(7)(6)[(6)(6)](1 2.9688111 2.968811)t第七次迭代:=-=------e w bX(7)(7)(7)(0.00780.00780.00780.00780.00780.00780.00780.0078)t#w w e=+=--CX(8)(7)(7)(1.9922 1.9922 1.99220.9961)t=++=b b e e(8)(7)[(7)(7)](1 2.9844111 2.984411)tC第八次迭代:e w b=-=------(8)(8)(8)(0.00390.00390.00390.00390.00390.00390.00390.0039)tX#(9)(8)(8)(1.9961 1.9961 1.99610.9980)t CX =+=--w w e (9)(8)[(8)(8)](1 2.9922111 2.992211)t C =++=b b e e第九次迭代:(9)(9)(9)(0.00200.00200.00200.00200.00200.00200.00200.0020)tX =-=------e w b#(10)(9)(9)(1.9980 1.9980 1.99800.9990)t CX =+=--w w e (10)(9)[(9)(9)](1 2.9961111 2.996111)t C =++=b b e e第十次迭代:3(10)(10)(10) 1.010(0.97660.97660.97660.980.980.980.980.98)tX -=-=创------e w b#(11)(10)(10)(1.9990 1.9990 1.99900.9995)t CX =+=--w w e (11)(10)[(10)(10)](1 2.9980111 2.998011)t C =++=b b e e由于31.010e -<?,可以认为此时权系数调整完毕,最终的权系数为:(2221)t ?-w相应的判别函数为:1231()222d x x x =--+x题8:用二次埃尔米特多项式的势函数算法求解以下模式的分类问题ω1: {(0 1)T , (0 -1)T } ω2: {(1 0)T , (-1 0)T }111201022212011222331201222441211021551211121226612112212()(,)()()1()(,)()()2()(,)()()42()(,)()()2()(,)()()4()(,)()()2(4x x x H x H x x x x H x H x x x x x H x H x x x x x H x H x x x x x H x H x x x x x x H x H x x x ϕϕϕϕϕϕϕϕϕϕϕϕ=========-=========2771221021288122112212299122122122)()(,)()()42()(,)()()2(42)()(,)()()(42)(42)x x x H x H x x x x x H x H x x x x x x H x H x x x ϕϕϕϕϕϕ-===-===-===--所以,势函数91(,)()()k iiki K x x x x ϕϕ==∑第一步:取1101X w ⎛⎫=∈ ⎪⎝⎭,故2222212211212()152040243264K X x x x x x x x =-+++-- 第二步:取2101X w ⎛⎫=∈⎪-⎝⎭,12()50K X =>,故21()()K X K X = 第三步:取3210X w ⎛⎫=∈ ⎪⎝⎭,23()90K X =>,故223232211()()(,)20162016K X K X K X X x x x x =-=+--第四步:取4210X w -⎛⎫=∈ ⎪⎝⎭,34()40K X =>,故222224342121212()()(,)152********K X K X K X X x x x x x x x =-=+---+ 第五步:取5101X w ⎛⎫=∈ ⎪⎝⎭,45()270K X =>,故54()()K X K X =第六步:取6101X w ⎛⎫=∈ ⎪-⎝⎭,56()130K X =-<,故2265612()()(,)3232K X K X K X X x x =+=-+ 第七步:取7210X w ⎛⎫=∈ ⎪⎝⎭,67()320K X =-<,故76()()K X K X =第八步:取8210X w -⎛⎫=∈⎪⎝⎭,78()320K X =-<,故 87()()K X K X =第九步:取9101X w ⎛⎫=∈ ⎪⎝⎭,89()320K X =>,故98()()K X K X =第十步:取10101X w ⎛⎫=∈ ⎪-⎝⎭,910()320K X =>,故109()()K X K X =从第七步到第十步的迭代过程中,全部模式都已正确分类,故算法已经收敛于判别函数:221012()()3232d X K X x x ==-+ 题9:用下列势函数2||||(,)k X X k K X X eα--=求解以下模式的分类问题ω1: {(0 1)T, (0 -1)T}ω2: {(1 0)T, (-1 0)T}选取1α=,在二维情况下,势函数为1222212(,)exp{||||}exp{[()()]}k k k k K X X X X x x x x =--=--+-以下为势函数迭代算法:第一步:取1101X w ⎛⎫=∈ ⎪⎝⎭,故22112()exp{(1)}K X x x =---第二步:取2101X w ⎛⎫=∈⎪-⎝⎭,12()exp{4}0K X =->,故21()()K X K X = 第三步:取3210X w ⎛⎫=∈ ⎪⎝⎭,23()exp{1}0K X =->,故22223231212()()(,)exp{(1)}exp{(1)}K X K X K X X x x x x =-=-------第四步:取4210X w -⎛⎫=∈ ⎪⎝⎭,34()exp{2}exp{4}0K X =--->,故222222434121212()()(,)exp{(1)}exp{(1)}exp{(1)}K X K X K X X x x x x x x =-=---------+-第五步:取5101X w ⎛⎫=∈ ⎪⎝⎭,45()1exp{2}exp{2}0K X =---->,故54()()K X K X =第六步:取6101X w ⎛⎫=∈⎪-⎝⎭,56()exp{4}exp{2}exp{2}0K X =-----<,故 2222656121222221212()()(,)exp{(1)}exp{(1)} exp{(1)}exp{(1)}K X K X K X X x x x x x x x x =+=--++---------+-第七步:取7210X w ⎛⎫=∈ ⎪⎝⎭,67()exp{2}exp{2}1exp{4}0K X =-+----<,故76()()K X K X =第八步:取8210X w -⎛⎫=∈⎪⎝⎭,78()exp{2}exp{2}exp{4}10K X =-+----<,故 87()()K X K X =第九步:取9101X w ⎛⎫=∈ ⎪⎝⎭,89()exp{4}1exp{2}exp{2}0K X =-+---->,故98()()K X K X =第十步:取10101X w ⎛⎫=∈⎪-⎝⎭,910()1exp{4}exp{2}exp{2}0K X =+----->,故 109()()K X K X =从第七步到第十步的迭代过程中,全部模式都已正确分类,故算法已经收敛于判别函数:222210121222221212()()exp{(1)}exp{(1)} exp{(1)}exp{(1)}d X K X x x x x x x x x ==--++---------+-。