XXXXXXXX大学本科生过程控制课程设计说明书题目:热电厂锅炉炉膛温度控制系统的设计学生姓名:学号:专业:班级:指导教师:摘要锅炉是热电厂重要且基本的设备 ,其最主要的输出变量之一就是主蒸汽温度。
主汽温度自动调节的任务是维持过热器出口汽温在允许范围内 ,以确保机组运行的安全性和经济性。
如果该温度过高 ,会使锅炉受热面及蒸汽管道金属材料的蠕变速度加快 ,降低使用寿命。
若长期超温 ,则会导致过热器爆管 ,在汽机侧还会导致汽轮机的汽缸、汽阀、前几级喷嘴和叶片、高压缸前轴承等部件的寿命缩短 ,甚至损坏;假如该汽温过低 ,会降低机组的循环热效率 ,一般汽温每降低5 ℃~10 ℃,效率约降低1 % ,同时会使通过汽轮机最后几级的蒸汽湿度增加 ,引起叶片磨损;当汽温变化过大时 ,将导致锅炉和汽轮机金属管材及部件的疲劳 ,还将引起汽轮机汽缸和转子的胀差变化 ,甚至产生剧烈振动 ,危及机组的安全 ,所以有效精准的控制策略是十分必要的锅炉炉膛温度的控制效果直接影响着产品的质量,温度低于或者高于要求时都不能达到生产质量指标,有时甚至会发生生产事故,此设计控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计热电厂锅炉温度控制系统,以达到精度在正负5 ℃范围内。
关键词:热电厂;锅炉;炉膛温度;串级控制目录引言 (4)第一章热电厂的工艺流程及要求 (5)第二章锅炉的工艺流程及控制要求 (7)2.1锅炉的工艺流程 (7)2.2锅炉的控制要求 (8)第三章锅炉炉膛温度的分析 (8)第四章锅炉炉膛温度控制系统的设计 (12)4.1炉膛温度控制的理论数学模型 (12)4.2炉膛温度控制方法的选择 (12)4.3 系统单元元件的选择 (12)4.3.1温度检测变送器的选择 (12)4.3.2流量检测变送器的选择 (14)4.3.3主、副调节器正反作用的选择 (15)4.3.4主、副回路调节器调节规律的选择 (16)4.3.5控制器仪表的选择 (16)4.3.6控制阀的选择 (18)第五章锅炉炉膛温度控制系统的工作原理 (19)第六章总结 (20)参考文献 (21)引言随着现代工业生产的迅速发展,对工艺操作条件的要求更加严格,对安全运行及对控制质量的要求也更高。
而单回路控制系统往往不能满足生产工艺的要求,在这样的情况下,串级控制系统应运而生。
锅炉温度串级控制系统的生产工艺要求:(1) 可以实现对整个锅炉系统工艺流程的控制。
(2) 能够自动控制锅炉温度,并达到所需精度。
(3) 有良好的人机界面,能方便地在线修改参数,并以动画实现数据和流程的“可视化。
工程控制是工业自动化的重要分支。
几十年来,工业过程控制获得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及能源的节约都起着重要的作用。
生产过程是指物料经过若干加工步骤而成为产品的过程。
该过程中通常会发生物理化学反应、生化反应、物质能量的转换与传递等等,或者说生产过程表现为物流过变化的过程,伴随物流变化的信息包括物流性质的信息和操作条件的信息。
生产过程的总目标,应该是在可能获得的原料和能源条件下,以最经济的途径,将原物料加工成预期的合格产品。
为了打到目标,必须对生产过程进行监视和控制。
因此,过程控制的任务是在了解生产过程的工艺流程和动静态特性的基础上,应用理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段。
实现生产过程的控制目标。
第一章热电厂的工艺流程及要求1.1热电厂生产工艺原煤经过制粉系统将大块的煤转化成可供锅炉燃烧的煤粉,生水经过水处理系统再经过除盐处理而除去水质里的钙、镁、钠等盐分子,然后通入锅炉,锅炉里的煤粉和通入的热空气经过一定比例的混合后燃烧使得锅炉产生蒸汽,这些高温的蒸汽通过汽轮机,使得汽轮机高速运转产生的旋转机械能,发电机连接着汽轮机,发电机将汽轮机产生的旋转机械能转化成电能,这些电压不定的电力在主变压器的作用下变成一定电压的电量,经过高压远程输电送入各个电网输送到全国各地热电厂是联合生产电能和热能的发电厂。
热电厂供热系统是利用汽轮机同时生产电能和热能的热电系统作为热源。
以热电厂作为热源不仅热能利用效率高,同时有利于环保。
以热电厂作为热源的供热系统称为热电厂集中供热系统。
集中热水供应系统主要由热媒系统,热水供应系统和附件三个部分组成。
热媒系统由热源,换热器和热媒管网组成。
由锅炉生产的蒸汽通过热媒管网送到换热器加热冷水,变成高温水通过热媒管网供暖。
经过热交换蒸汽变成冷凝水,大部分和新补充的软化水经冷凝循环泵再送回锅炉加热成蒸汽,如此循环完成热传递过程。
热水供水系统由热水配水管网和回水管网组成。
被加热到一定温度的冷水,从换热器出来,经配水管网送至各个热水配水点,而换热器冷水由高位水箱或给水管网补给。
供热后的热水经回水管使一定量的热水经过循环水泵再流回换热器。
热电厂包含有火力发电厂车间、水处理车间和热力车间三个部分。
其中火力发电厂流程为燃料的化学能→蒸汽的热势能→机械能→电能。
在锅炉中,燃料的化学能转变为蒸汽的热能;在汽轮机中,蒸汽的热能转变为轮子旋转的机械能;在发电机中机械能转变为电能。
水处理系统就是为了产出电导率<0.6 us/cm的锅炉用水。
热电厂主要是有两个阴床,两个阳床和两个混床,在其工作的时候,分别就一个工作,另一个主要是备用。
另外,热力车间燃气蒸汽联合循环发电装置一般由燃气轮机、原料气压缩机、蒸汽轮机、余热锅炉、热交换器、发电机等组成。
燃气轮机的燃料主要有油、高炉煤气、水煤气、炼油长气等,如下图(1-1)图(1-1)热电厂生产工艺流程图第二章锅炉的工艺流程及控制要求2.1锅炉的工艺流程由于锅炉设备使用的燃料、燃烧设备、炉体形式、锅炉功用和运行要求的不同,锅炉有各种各样的流程。
常见流程如图2.1所示。
由图可知,蒸汽发生系统由给水泵、给水调节阀、省煤器、汽包及循环管组成。
燃料和热空气按照一定的比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽D,然后s经过热器,形成一定汽温的过热蒸汽D,汇集至蒸汽母管。
压力为P的过热蒸M汽,经负荷设备调节阀供给生产负荷使用。
与此同时,燃烧过程中产生的烟气,将饱和蒸汽变成过热蒸汽后,经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。
2.2锅炉的控制要求根据生产负荷的不同需要,锅炉需要提供不同规格(压力和温度)的蒸汽,同时,根据安全性和经济性的要求,是锅炉安全运行和完全燃烧,锅炉设备的主要控制要求如下。
1、供给蒸汽量适应负荷变化需要或者保持给定负荷;2、锅炉供给用汽设备的蒸汽压力应当保持在一定的范围内;3 、过热蒸汽温度保持在一定范围;4、汽包水位保持在一定范围;5、保持锅炉燃烧的经济性和安全性;6 、炉膛负压保持在一定的范围内。
根据上述要求,锅炉设备的主要控制系统见表2.1.表2.1 锅炉设备的主要控制系统第三章锅炉炉膛温度的分析火电厂的锅炉炉膛由于采用的燃料为煤粉,在燃烧过程中,炉膛和汽包之间的传热过程是一个相当复杂的过程,炉膛的温度的动态特性具有一般的大滞后、时变、非线性和不对称性等特点。
在过程控制中,为了方便设计,同时又在一定的要求范围内,我们通常把锅炉炉膛的温度的动态特性看作是一个线性的系统。
可以用以下传递函数描述。
具有时滞的一阶环节τs e Ts K s G -+=1)( (0.1) 具有时滞的二阶环节 τs e s T s T Ks G -++=)1)(1()(21 (0.2)在现场环境中,炉膛内的温度变化是时时刻刻的,很难用一个固定的数学公式将炉温的变化规律总结出来。
但是我们要对炉膛内的温度进行控制就必须要对炉膛内的温度变化进行一个规律的总结,所以在规定的要求范围内,对一些情况进行近似处理是很合理和必要的。
在通常情况下,我们给定炉膛一个温度值,作为系统的给定,使锅炉炉膛在这个给定的温度状态下工作。
这个温度的变化又是和炉内的燃料燃烧量和炉体的总散热量相关的。
对于火电厂锅炉来说,炉体的容量、结构、检测元件及其安放位置等都影响着滞后的大小。
它不是一个单一的问题,是一个系统问题(容积滞后时间就是级联的各个惯性环节的时间常数之和)。
纯滞后产生的根源也要从整个测量系统来考虑,并且与温度的高低有关。
热量从热源传到温度传感器要经过多个热阻与热容相串联的热惯性环节,而串联的多容对象会产生等效纯时滞后。
随着温度的升高,辐射传热的比例增大,辐射具有穿透性,使传热路径缩短,传热速度加快。
所以纯滞后的时间会随温度升高而减小。
由于火电厂锅炉使用的燃料是煤粉,即锅炉能量的来源方式是通过化学燃料的燃烧获得能量的,同时,炉膛内能量的散发形式又是以炉膛的炉体热量散失,对汽包进行热量传导进行散失等多种途径进行的,所以炉膛内的温度的变化是一个相当复杂的过程,是一个非线性变化的过程。
从模型参数上看,在锅炉炉膛的整个温度调节范围内,对象的增益、容积滞后时间和纯滞后时间通常是与工作温度与负载变化有关的变参数,而且参数变化量与温度变化量之间是非线性关系。
由于锅炉炉膛内的温度是高温段的,在高温段,温度变化的纯滞后时间和过程增益将比低温段有显著减少,而时间常数则显著增大。
锅炉作为一种高负荷运转的设备,特别是火电厂内的锅炉,长期处于高负荷运转下,随着运行时间的变化,其各项性能都会逐渐发生变化,特别是随着使用时间的增长,炉子的保温隔热材料会逐渐老化,炉膛内部由于长期处于高温环境中,炉体的保温、密封性能变差,通过炉体向外散失的热量增大。
此外,锅炉初次使用和久停后再用时,由于绝热保温材料中的水分大,炉膛温度的特性差别也是很大的。
另外,随着季节的变换,锅炉运行的外部环境温度也是经常变化的,冬天外部环境相对较冷,炉体的散热较快;夏天气温炎热,炉体的散热相对会较慢。
如此种种因素都会引起炉膛温度特性的变化,但变化的速度十分缓慢而不明显。
火电厂锅炉炉膛温度具有大惯性、大滞后特性。
在炉膛的整个温度范围内,对象的增益、容积滞后时间、纯滞后时间都是与工作温度有关的变参数。
从传热原理可知,这些参数也与负荷变化有关。
在锅炉设计的工作温区,在工作点附近的小范围内其动特性接近于线性,较容易控制,用常规的PID调节器也能控制得很好,但不能经受太大的扰动,也不能够大范围地跟踪变化较快的给定信号。
对于常规仪表,大范围地改变温度要靠手动,仅当温度接近给定值时方可投入自动。
根据以上分析,可以认为火电厂锅炉炉膛温度是一种具有大容积滞后和大纯滞后的对象。
在整个炉膛的温区内,其动态参数随锅炉的工作温度变化,在工作点附近的小温度范围内,炉膛的动态特性近似线性的。
第四章 锅炉炉膛温度控制系统的设计4.1炉膛温度控制的理论数学模型根据以上分析可知,炉膛温度问题是比较复杂的。