高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。
已知小物块质量m =1kg ,取g =10m/s 2。
求:(1)小物块与小车BC 部分间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度。
【答案】(1)0.5(2)1m/s 【解析】 【详解】解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5RLμ== (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :22121122mgR mv Mv =+ 联立解得: 21/ v m s =3.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞。
(1)若v1=6 m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能ΔE;(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A 点时的最大动能E。
【答案】(1)9J (2)10m/s<v1<14m/s 17J【解析】试题分析:(1)由于P1和P2发生弹性碰撞,据动量守恒定律有:碰撞过程中损失的动能为:(2)解法一:根据牛顿第二定律,P做匀减速直线运动,加速度a=设P1、P2碰撞后的共同速度为v A,则根据(1)问可得v A=v1/2把P与挡板碰撞前后过程当作整体过程处理经过时间t1,P运动过的路程为s1,则经过时间t2,P运动过的路程为s2,则如果P能在探测器工作时间内通过B点,必须满足s1≤3L≤s2联立以上各式,解得10m/s<v1<14m/sv1的最大值为14m/s,此时碰撞后的结合体P有最大速度v A=7m/s根据动能定理,代入数据,解得E=17J解法二:从A点滑动到C点,再从C点滑动到A点的整个过程,P做的是匀减速直线。
设加速度大小为a,则a=μg=1m/s2设经过时间t,P与挡板碰撞后经过B点,[学科网则:v B=v-at,,v=v1/2若t=2s时经过B点,可得v1="14m/s"若t=4s时经过B点,可得v1=10m/s则v1的取值范围为:10m/s<v1<14m/sv1=14m/s时,碰撞后的结合体P的最大速度为:根据动能定理,代入数据,可得通过A点时的最大动能为:考点:本题考查动量守恒定律、运动学关系和能量守恒定律4.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。
车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:(1)整个过程中摩擦阻力所做的总功;(2)人给第一辆车水平冲量的大小;(3)第一次与第二次碰撞系统功能损失之比。
【答案】【解析】略5.如图所示,光滑水平面上依次放置两个质量均为m的小物块A和C以及光滑曲面劈B,B的质量为M=3m,劈B的曲面下端与水平面相切,且劈B足够高,现让小物块C以水平速度v0向右运动,与A发生弹性碰撞,碰撞后小物块A又滑上劈B,求物块A在B上能够达到的最大高度.【答案】238v hg【解析】试题分析:选取A 、C 系统碰撞过程动量守恒,机械能守恒,应用动量守恒定律与机械能守恒定律求出A 的速度;A 、B 系统在水平方向动量守恒,由动量守恒定律与机械能守恒定律可以解题.小物块C 与A 发生弹性碰撞, 由动量守恒得:mv 0=mv C +mv A由机械能守恒定律得:2220111222C A mv mv mv =+ 联立以上解得:v C =0,v A =v 0设小物块A 在劈B 上达到的最大高度为h ,此时小物块A 和B 的共同速度大小为v ,对小物块A 与B 组成的系统,由机械能守恒得:()221122A mv mgh m M v =++ 水平方向动量守恒()A mv m M v =+联立以上解得: 238v h g=点睛:本题主要考查了物块的碰撞问题,首先要分析清楚物体运动过程是正确解题的关键,应用动量守恒定律与机械能守恒定律可以解题.要注意A 、B 系统水平方向动量守恒,系统整体动量不守恒.6.如图所示,木块m 2静止在高h=0.45 m 的水平桌面的最右端,木块m 1静止在距m 2 左侧s 0=6.25 m 处.现木块m 1在水平拉力F 作用下由静止开始沿水平桌面向右运动,与 m 2碰前瞬间撤去F ,m 1和m 2发生弹性正碰.碰后m 2落在水平地面上,落点距桌面右端水平 距离s=l .2 m .已知m 1=0.2 kg ,m 2 =0.3 kg ,m 1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m /s 2)求:(1)碰后瞬间m 2的速度是多少? (2)m 1碰撞前后的速度分别是多少? (3)水平拉力F 的大小?【答案】(1)4m/s (2)5m/s ;-1m/s (3)0.8N 【解析】试题分析:(1)m 2做平抛运动,则:h=12gt 2; s=v 2t ; 解得v 2=4m/s(2)碰撞过程动量和能量守恒:m 1v=m 1v 1+m 2v 212m 1v 2=12m 1v 12+12m 2v 22代入数据解得:v=5m/s v 1=-1m/s (3)m 1碰前:v 2=2as11F m g m a μ-=代入数据解得:F=0.8N考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.7.如图所示,在光滑的水平面上有一长为L 的木板B ,其右侧边缘放有小滑块C ,与木板B 完全相同的木板A 以一定的速度向左运动,与木板B 发生正碰,碰后两者粘在一起并继续向左运动,最终滑块C 刚好没有从木板A 上掉下.已知木板A 、B 和滑块C 的质量均为m ,C 与A 、B 之间的动摩擦因数均为μ.求:(1)木板A 与B 碰前的速度v 0; (2)整个过程中木板B 对木板A 的冲量I . 【答案】(1)2(2)-,负号表示B 对A 的冲量方向向右【解析】(1)木板A 、B 碰后瞬时速度为v 1,碰撞过程中动量守恒,以A 的初速度方向为正方向,由动量守恒定律得mv 0=2mv 1.A 、B 粘为一体后通过摩擦力与C 发生作用,最后有共同的速度v 2,此过程中动量守恒,以A 的速度方向为正方向,由动量守恒定律得2mv 1=3mv 2. C 在A 上滑动过程中,由能量守恒定律得 -μmgL =·3mv -·2mv . 联立以上三式解得v 0=2.(2)根据动量定理可知,B 对A 的冲量与A 对B 的冲量等大反向,则I 的大小等于B 的动量变化量,即I =-mv 2=-,负号表示B 对A 的冲量方向向右。
8.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.9.(20分)如下图所示,光滑水平面MN 左端挡板处有一弹射装置P ,右端N 与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ 的长度L=8m ,皮带轮逆时针转动带动传送带以v = 2m/s 的速度匀速转动。