当前位置:文档之家› 超静定结构力法

超静定结构力法


3、补充转化条件——力法的基本方程
MA
FAx
A
FAy
A
FP C
FP
B X1
B
FP
A
C
B
静定结构
A
B
C
X1
基本体系
基本结构
基本体系转化为原来超静定结构的条件是:基本体系沿
多余未知力X1方向的位移D1应与原结构位移ΔB相同,即
Δ1 = ΔB = 0 这个转化条件是一个变形条件或称位移条件,也就是
计算多余未知力时所需要的补充条件。
x2
x1 x2
x1
x3
x3
x3
x2
x1
(a)
(a1)
(a2)
(3 次)
x2 x2

x1
x3
(14 次)

(1 次)
(6 次)
(4 次)
§ 2 力法的基本概念
一、力法的基本思路:把超静定结构的计算问题转化为静
定结构的问题,即利用已熟悉的静定结构的计算方法达到计 算超静定结构的目的。
1、找出关键问题——力法的基本未知量
X2
n=6 超静定刚架
X1
X1
X5
X6
X3
三铰刚架
X1
X2
X3 X4
X6
X4 X6
X5
二悬臂折梁
X2 X3
X4
简支刚架
X6 X5
对同一超静定结构,可以采取不同的方式移去多余约束,而 得到不同的静定结构,但是多余约束的数目总是相同的,因 而所确定的结构超静定次数也是唯一的。

试确定图(a)、(b)所示结构的基 本未知量。
§1 超静定结构的组成和超静定次 数
• 超静定结构的组成
• 超静定次数
一、超静定结构
1、超静定结构的两大特征 从两个方面把它与静定结构作一个对比 :
(1)在几何组成方面:静定结构是没有多余约束的几何不变 体系,而超静定结构则是有多余约束的几何不变体系
(2)在静力分析方面:静定结构的支座反力和截面内力都 可以用静力平衡条件唯一地确定,而超静定结构的支座反 力和截面内力不能完全由静力平衡条件唯一地加以确定
二、超静定次数的确定
力法是以结构中的多余约束力为基本未知量的,一个 结构的基本未知量数目就等于结构的多余约束数目。 因此,力法计算首先要找出结构的多余约束。
超静定结构中的多余约束数目,称为超静定次数,用n 表示。
确定结构超静定次数最直接的方法是解除多余约束 法,即将原结构的多余约束移去,使其成为一个 (或几个)静定结构,则所解除的多余约束数目就 是原结构的超静定次数。
FP q
FP
FP
FP
FP
FP
FP
q
FP

X1 X1
X2 X2



X1
总起来说,约束有多余的,内力(或支座反力)是超
静定的,这就是超静定结构区别于静定结构的两大基
本特征。凡符合这两个特征的结构,就称为超静定结
构。
2பைடு நூலகம்超静定结构的两种约束
(1)必要约束:对维持体系的几何不变性不可缺少的约 束,称为必要约束。
MA A
FAx
FAy
FP B
C
X1
FP
A
C
B
静定结构
图中的超静定结构与静定结构相比较,其不同之处在于:在支
座B处多了一个多余未知力X1,这就造成了该结构的超静定性。 只要能设法求出这个X1,则剩下的问题就纯属静定问题了
2、寻求过渡途径——力法的基本体系
MA
FP
FP
A FAx
B
A
C
B
C
FAy
FP
X1
静定结构
A
B
A
B
C
X1
基本体系
基本结构
将图示结构的多余约束移去,而代之以多余未知力X1,并保留 原荷载所得到的结构,称为力法的基本体系。与之相应,把结 构的多余约束并连同荷载一起移去后所得到的结构,称为力法 的基本结构。
基本体系本身既是静定结构,又可用它代表原来的超静定结构。 因此,它是由静定结构过渡到超静定结构的有效途径。
解除超静定结构的多余约束,归纳起来有以下几种方式:
1)移去一根支杆或切断一根链杆, 相当于解除一个约束。
2)移去一个不动铰支座或切开一个 单铰,相当于解除两个约束。
X1
X2 X1
X1 X1
X1 X1 X2 X2
3)移去一个固定支座或切断一根梁 式杆,相当于解除三个约束。
4)将固定支座改为不动铰支座或 将梁式杆中某截面改为铰结,相当 于解除一个转动约束。
第二部分 超静定结构 第六章 力法
• §1 超静定结构的组成和超静定次数 • §2 力法的基本概念 • §3 超静定刚架和排架 • §4 超静定桁架和组合结构 • §5 对称结构的计算 • §6 两铰拱 • §7 无铰拱(自学) • §8支座移动和温度改变时的计算 • §9 超静定结构位移的计算 • §10超静定结构计算的校核
X3 X2
X1
X1
X1 X1 X3 X3
X2
X1
在解除多余约束判断结构的超静定次数时,应特别注意:既须 移去全部多余约束,又要保留每个必要约束,以保证结构成为 没有任何多余约束的几何不变体系,亦即成为静定结构。
(1)刚性联结的封闭框格,必须沿某一截面将其切断。 (2)去掉多余联系的方法有多种,但所得到的必须是几 何不变体系;几何可变、瞬变均不可以。
Δ1 = ΔB = 0 应用叠加原理把条件写成显含多余未知力Xi的展开形式。
Δ1=Δ1P+Δ11=0
Δ1为基本体系在荷载与未知力X1共 同作用下沿X1方向的总位移; Δ1P为基本结构在荷载单独作用下 沿X1方向的位移; Δ11为基本结构在未知力X1单独作 用下沿X1方向的位移。
(2)多余约束:对维持体系的几何不变性不是必需的约 束,称为多余约束。
多余约束中的约束力称为多余约束力,一般用Xi (i=1,2,…,n)表示。多余约束对结构的作用可以用相 应的多余约束力代替 。多余约束虽然不改变体系的几 何组成性质,但多余约束的存在,将影响结构的内力 与变形的大小及分布规律。
3、超静定结构的五种类型
X2
X2
X4
X4
X3
X1
X1
对于图示结构,水平支座链杆不可去掉,否则就将变成几何可
变体系;如果只去掉一根竖向支座链杆,则其中的闭合框格仍
然具有三个多余约束。还必须把该闭合框格再切开一个截面,
这时才成为静定结构。因此,原结构总共有四个多余约束,即
为四次超静定体系。
图示体系是六次超静定结构:
X1
X2 X4
1)超静定梁 3)超静定拱
2)超静定刚架 4)超静定桁架
5)超静定组合结构
4、分析超静定结构的两个基本方法
力法和位移法是分析超静定结构的两个基本方法。 力法是提出较早、发展最完备的计算方法,同时也是 更为基本的方法。
位移法的提出较力法稍晚些,是在20世纪初为了计算 复杂刚架而建立起来的。
在上述两种基本方法的基础上,还曾演变出多种渐近 法和近似法,主要用以克服当年因计算手段滞后给手 算工作带来的困难。属于位移法类型的渐近解法—— 力矩分配法和无剪力分配法;以及近似解法——分层 计算法和反弯点法,至今仍具有工程实用价值,
相关主题