当前位置:文档之家› 反渗透阻垢剂的动态阻垢性能研究及垢样分析

反渗透阻垢剂的动态阻垢性能研究及垢样分析

1 试验部分
1.1 原材料 聚环氧琥珀酸 (PESA)、羟基亚乙基二膦酸
(HEDP)、2- 膦酰基丁烷 -1,2,4- 三羧酸(PBTCA) 由山东省泰和水处理有限公司生产,聚天冬氨酸 (PASP)由本文作者合成。 1.2 反渗透阻垢剂的合成
将 PASP、PESA、HEDP、PBTCA 按 2:6:1:1 比 例进行复配,制成反渗透阻垢剂 (以下称为阻垢 剂)。以上各组分之间的比例经是过大量试验,在对
4.0 Á
3.5
如果在第 i 个循环周期出现 CaCO3 沉积,则供料 3.0
罐中 Ca2+ 离子浓度的增加倍数将小于供水的浓缩因
2.5
子,此时沉积在膜表面上的 CaCO3 垢的总量 Mi 为:
2.0

Mi=[CCa2+×V0-
CiCa2+×Vi]×10100


=V0×(CCa2+-
2+
C ) Ca
CaCO3 计) 含量为 460 mg·L-1、HCO3- (以 CaCO3 计)含量为 350 mg·L-1,垢剂浓度为 3 mg·L-1,试验 按上述方法以“周期性浓缩的全循环模式”进行,每 一周期运行 0.5 h,试验结果如图 2~图 6 所示。
1.3.3 周期性浓缩的全循环模式结垢速率的计算

垢的量,g;CCa2+为供料罐初始进料溶液 (原水)中
由图 2 可以看出,在阻垢剂存在下,当供料罐溶

Ca2+ 离子浓度 (相当于 CaCO3),mg·L-1;CCa2+为第 i
液浓缩因子大于 3.5 时,供料罐中的 Ca2+ 离子的浓
个循环周期供料罐中溶液的 Ca2+ 离子浓度(相当于 缩倍数将偏离 Cl- 的浓缩曲线;而在 PTP0100 存在
采用北京中科科仪公司生产的扫描电子显微镜, 取与上述相同的现场自来水,加入该反渗透阻垢剂 后,于 80℃恒温水浴,浓缩 1.5 倍,取下烧杯,澄清倒 出清液,将烧杯连同水垢低温干燥后,刮下烧杯壁垢 样,将垢样进行扫描电子显微镜观察。
2 结果 与讨论
2.1 小型反渗透装置的性能评价 以地下水作为试验原水,水质指标 Ca2+ (以
第 34 卷 第 9 期
50
2008 年 9 月
水处理技术 TECHNOLOGY OF WATER TREATMENT
Vol.34 No.9 Sep.,2008
反渗透阻垢剂的动态阻垢性能研究及垢样分析
姜红静 1,2,刘振法 2,王丽梅 1,2,田彩莉 2,闫美芳 2
(1.河北工业大学化工学院,天津 300130; 2.河北省能源研究所,河北 石家庄 050081)
摘 要: 以“周期性浓缩的全循环模式”试验方法对复配的阻垢剂和进口阻垢剂 PTP0100 的阻垢性能进行了评价。
结果表明, 复配的反渗透阻垢剂在动态性能方面优于进口同类产品 PTP0100。利用扫描电子显微镜对碳酸钙晶型进
行了分析, 结果表明, 实验室研制的反渗透阻垢剂可使碳酸钙晶体发生明显的扭曲现象, 碳酸钙结晶更加细小分散。

Ki 1000
(1)
式中:Mi 为第 i 个循环周期膜上积累的 CaCO3
1.5
1.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 K
Á
图 2 供料罐离子浓缩倍数与溶液浓缩因子的关系 Fig.2 Feedwater concentration factor vs volum con-
centration factor
复配物的阻垢分散性能和含磷量等多种因素综合分 析比较后得出的最佳配方。 1.3 反渗透装置动态性能评价[3] 1.3.1 动态试验装置
反渗透装置流程如图 1 所示。



图 1 反渗透装置试验流程 Fig.1 Flow chart of reverse osmosis experiment
CaCO3),mg·L-1。
下,当供料罐溶液浓缩因子大于 3.0 时,供料罐中的
第 i 个循环周期 CaCO3 的平均结垢速度 vi 可按 Ca2+ 离子的浓缩倍数将偏离 Cl- 的浓缩曲线,说明此
式(2)计算:
时 Ca2+ 有可能沉积于膜表面上。这是因为在周期运
i-1

vi=
Mi-Mi-1 = V0(CCa2+/Ki-1- CCa2+/Ki)
行期间,供料罐溶液的浓缩因子将逐渐增加。若没有 出现结垢,供料罐溶液中的构晶离子的浓度将随着 浓缩因子的增加而成比例地增加,若出现结垢,供料 罐溶液中的构晶离子的浓度将小于浓缩因子的增 加。因此可知阻垢剂在 3.5 倍高浓缩倍数才出现结垢 现象,即总硬度达 2100 mg·L-1(以 CaCO3 计)时才 出现结垢现象,所以该阻垢剂适应于高硬度水质。
总回收率提高了,设第 i 个循环周期供水浓缩倍数

为 KCl(- Ki),装置的固有回收率为 Y′,第 i 个循环


周期的总回收率为 Yi。CCl-和 CCa2+分别为第 i 个循环

周期供水
Cl-、Ca2+
的浓度,C0 和 - Cl
C 分 2+ Ca





原水 Cl-、Ca2+ 的浓度,则:
关键词: 反渗透; 阻垢剂; 垢样分析
中图分类号: TQ085+.4
文献标识码: A
文章编号: 1000-3770(2008)09-050-04
在反渗透系统运行过程中,反渗透膜结垢严重 影响着反渗透装置的运行效率,如使系统运行能耗 增加,反渗透膜寿命减短,出水水质变坏等[1]。阻垢 剂,作为用于反渗透水处理系统阻止污垢在反渗透 膜上沉积的一类药剂,近年来市场需求量不断增加, 但现在各厂家使用的大部分是国外进口阻垢剂如 PTP-0100 等,这些阻垢剂的价格昂贵,大部分含磷 量非常高。高磷阻垢剂的使用,不仅会加大系统产生 反渗透膜微生物污染的可能性,而且还会增加反渗 透系统排放的高磷浓水对环境的污染程度。所以开 发低磷、高效、价廉的阻垢剂,是现在市场的迫切需 求[2]。本试验对复配的反渗透阻垢剂动态阻垢性能进 行研究,并对垢样进行分析。
1.3.2 试验方法 进料泵将试验的原水从供料罐中抽至保安过滤
器,以去除大于 5 μm 的颗粒,再由高压泵泵入膜元 件,再循环至供料罐。膜元件采用美国海德能公司生产 的 ESPA3-4040 型涡卷式节能超低压复合膜 (芳香族 聚酰胺膜),每个膜元件直径 4 英寸,长度 40 英寸,有 效膜面积 85 平方英尺,脱盐率 99.5%。供料罐体积 350 L,试验中供水流量 1600~1700 L·h-1,产水流量 510~ 600 L·h-1,系统本身的回收率为 31.9%~35.3%。
recovery rate
图 3 为 CaCO3 垢在膜表面累积的垢量与总回 收率的关系。以“周期性浓缩的全循环模式”进行,使 供料罐中溶液离子的不断浓缩,总的回收率不断增 加,在阻垢剂存在下总回收率为 80%时,膜表面垢的 累计量为 0 g,而在 PTP0100 存在下,膜表面垢的累 计量为 2.3 g。图 4 为 CaCO3 结垢速率与总回收率关 系,当在该阻垢剂存在下总回收率为 80%时,膜表面 CaCO3 结垢的速率为 0 g·m-·2 h-1,而在 PTP0100 存在 下,膜表面 CaCO3 结垢的速率为 0.066 g·m-·2 h-1。
时进一步浓缩,又会增加浓水侧的结垢趋势,引起 CaCO3 进一步沉积。
2.2 垢样表面结垢分析 CaCO3 垢晶体在成长时,是按照一定晶格排列
的,形成的晶体结构坚硬如图 6(a)所示。当水中含有 阻垢剂时,由于阻垢剂阴离子对成垢钙离子的螯合 作用,因而干扰了 CaCO3 垢结晶的形成,使晶格发生 了歪曲,成为不规则晶体,这就是阻垢剂的晶格畸变 作用。晶格畸变作用限制了结晶体生长,晶体无法长 大,因此这种作用能使硬垢变成软垢,垢层中有大量 空隙,降低晶粒间的粘合力,在水流作用下容易被冲 走。图 6(a)为未加阻垢剂垢样,碳酸钙形成典型的棒 状晶体,表面光滑,形状规整,晶胞堆积紧密,排列规 则。图 6(b)为加入 10 mg·L-1 阻垢剂后形成的垢样, 可以看出,在多种药剂的协同作用下 CaCO3 晶粒活 性增长点受到了干扰,使 CaCO3 晶体产生了严重畸 变,由于多种药剂吸附在 CaCO3 晶粒活性增长点上, 使晶粒变的细小并且发生了更加严重的畸变,晶粒 没有明显的规则,呈非常好的分散状态。从图 6(c)中 可以看出,加入 PTP0100 后碳酸钙晶体变形程度较
饱和指数 LSI 是反渗透阻垢剂阻垢性能的一项 重要指标,饱和指数越大,阻垢性能越好。图 5 为 RO 膜元件浓水测的 LSI 值与总回收率的关系。可以看 出,3 mg·L-1 的阻垢剂可使浓水测的 LSI 值达到 3.1, 而不出现结垢,3 mg·L-1 的 PTP0100 存在下,浓水测 的 LSI 值达到 2.9,而不出现结垢。同时可以看出, CaCO3 没有结垢时,LSI 值会随回收率的增加而增 加,直至 CaCO3 开始结垢,LSI 值随回收率增加而下 降。这是因为在运行期间,一方面供料罐中构晶离子 的浓度将周期性地增加(浓缩),另一方面由于 CO2 能通过膜,引起供料罐溶液的 pH 增加,最终导致膜 元件浓水侧的结垢趋势增加,膜元件浓水侧 LSI 增 加。当 CaCO3 开始结垢时,浓水侧的构晶离子浓度 及 pH 都将降低,引起 LSI 值下降,结垢趋势下降,此
g
ÁÂÃÄ52
水处理技术
第 34 卷 第 9 期
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5
30 40 50 60 70 80 90 %
图 3 膜表面累积的垢量与总回收率的关系 Fig.3 Mass of accumulated scale on membrane surface vs

KCl-=

相关主题