当前位置:文档之家› 风机控制系统结构原理

风机控制系统结构原理

风机控制系统结构一、风力发电机组控制系统的概述风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标:1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。

2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。

3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。

4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。

对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。

主要完成下列自动控制功能:1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。

停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。

2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。

同样,在小风自动脱网停机后,5min内不能软切并网。

3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。

4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围±15°。

5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。

6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。

其余时间(运行期间、正常和故障停机期间)均处于归位状态。

7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,还应该自动投入偏航控制,使风力发电机组的机舱轴心线与风向成一定的角度,增加风力发电机组脱网的安全度,待机舱转约90°后,机舱保持与风向偏90°跟风控制,跟风范围±15°。

8)在电网中断、缺相和过电压的情况下,风力发电机组应停止运行,此时控制系统不能供电。

如果正在运行时风力发电机组遇到这种情况,应能自动脱网和抱闸停机,此时偏航机构不会动作,风力发电机组的机械结构部分应能承受考验。

9)风力发电机组塔架内的悬挂电缆只允许扭转±2.5 圈,系统已设计了正/反向扭缆计数器,超过时自动停机解缆,达到要求后再自动开机,恢复运行发电。

10)风力发电机组应具有手动控制功能(包括远程遥控手操),手动控制时“自动”功能应该解除,相反地投入自动控制时,有些“手动”功能自动屏蔽。

11)控制系统应该保证风力发电机组的所有监控参数在正常允许的范围内,一旦超过极限并出现危险情况,应能自动处理并安全停机。

二、控制系统的组成1. 电控系统从功能划分主要包括正常运行控制、阵风控制、最佳运行控制(最佳叶尖速比控制)、功率控制、安全保护控制、变桨距控制等部分。

如图1所示:图12. 从控制结构上来划分,电控系统可以分为以下四个部分,如图2所示:1)电网级控制部分:主要包括总的有功和无功控制,远程监控等。

2)整机控制部分:主要包括最大功率跟踪控制,速度控制,自动偏航控制等。

3)变流器部分:主要包括双馈发电机的并网控制,有功无功解耦控制,亚同步和超同步运行控制等。

4)变桨控制部分:又分为统一变桨控制和独立变桨控制两种,大型风电机组大多采用了独立变桨方式。

(减少紊流对风电机组的影响,平衡各个叶片的受力状况以及系统安全保障冗余的考虑)图23. 在控制过程中,风电机组将被控制在功率优化区和功率限制区范围内,如图3所示。

1)功率优化区:其中,区间A-B,C-D为固定转速区;区间B-C为变速区,在此区间内实现最佳叶尖速比控制。

(运行点B,C的位置由风电机组决定。

)2)功率限制区:在此区间,通过变桨距的方式限制输入功率为额定功率,但在阵风控制时,输入的瞬时功率会超过额定功率。

在图3中,双馈发电机的运行转速范围为:900转/分-2000转/分,额定转速为1800转/分。

当转速在900转/分-1800转/分之间时,可以进行最佳叶尖速比控制;而高于1800转/分的转速范围用于阵风控制,这样不但可以减少阵风对风电机组主传动链的冲击,同时也可以降低对变桨距系统响应速度的要求。

图3500100015002000E风速(m/s)机械功率(kW)转速(rpm)500100015002000额定转速电气功率(kW)风电机组功率曲线功率/转速曲线图4 1.0兆瓦变速机组电控系统图5 1.0兆瓦变速机组电控系统三、控制系统主要参数(恒速恒频)四、控制系统工作原理主开关合上后,风力发电机组控制器准备自动运作。

首先系统初始化,检查控制程序、微控制器硬件和外设、传感器来的脉冲及比较所选的操作参数,备份系统工作表,接着就正式起动。

起动的第一秒钟内,先检查电网、设置各个计数器、输出机构初始工作状态及晶闸管的开通角。

所有这些完成后,风力发电机组开始自动运行。

用于风轮的叶尖本来是90°,现在恢复为0°,风轮开始转动。

计算机开始时刻监测各个参数、输入,判断是否可以并网,判断参数有否超过极限、执行偏航、相位补偿、机械制动或空气制动。

其中相位补偿的作用在于使功率因数保持在0.95-0.99之间。

其详细的控制系统工作原理流程框图(见图9-2)。

五、风力发电机组的基本控制策略(一) 风力发电机组的工作状态风力发电机组总是工作在如下状态之一:①运行状态;②暂停状态;③停机状态;④紧急停机状态。

每种工作状态可看作风力发电机组的一个活动层次,运行状态处在最高层次,紧停状态处在最低层次。

为了能够清楚地了解机组在各种状态条件下控制系统是如何反应的,必须对每种工作状态作出精确的定义。

这样,控制软件就可以根据机组所处的状态,按设定的控制策略对调向系统、液压系统、变桨距系统、制动系统、晶闸管等进行操作,实现状态之间的转换。

以下给出了四种工作状态的主要特征及其简要说明。

(1) 运行状态:1)机械刹车松开;2)允许机组并网发电;3)机组自动调向;4)液压系统保持工作压力;5)叶尖阻尼板回收或变桨距系统选择最佳工作状态;(2) 暂停状态:1)机械刹车松开;2)液压泵保持工作压力;3)自动调向保持工作状态;4)叶尖阻尼板回收或变距系统调整桨叶节距角向90o方向;5)风力发电机组空转。

这个工作状态在调试风力发电机组时非常有用,因为调试风力机的目是要求机组的各种功能正常,而不一定要求发电运行。

(3) 停机状态:1)机械刹车松开;2)液压系统打开电磁阀使叶尖阻尼板弹出,或变距系统失去压力而实现机械旁路;3)液压系统保持工作压力;4)调向系统停止工作。

(4) 紧急停机状态:1)机械刹车与气动刹车同时动作;2)紧急电路 (安全链) 开启;3)计算机所有输出信号无效;4)计算机仍在运行和测量所有输入信号当紧停电路动作时,所有接触器断开,计算机输出信号被旁路,使计算机没有可能去激活任何机构。

(二)工作状态之间转变定义了风力发电机组的四种工作状态之后,我们进一步说明各种工作状态之间是如何实现转换的。

按图3-8箭头所示,提高工作状态层次只能一层一层地上升,而要降低工作状态层次可以是一层或多层。

这种工作状态之间转变方法是基本的控制策略,它主要出发点是确保机组的安全运行。

如果风力发电机组的工作状态要往更高层次转化,必须一层一层往上升,用这种过程确定系统的每个故障是否被检测。

当系统在状态转变过程中检测到故障,则自动进入停机状态。

当系统在运行状态中检测到故障,并且这种故障是致命的,那么工作状态不得不从运行直接到紧停,这可以立即实现而不需要通过暂停和停止。

下面我们进一步说明当工作状态转换时,系统是如何工作的。

1.工作状态层次上升紧停→停机如果停机状态的条件满足,则:1)关闭紧停电路;2)建立液压工作压力;3)松开机械刹车。

停机→暂停如果暂停的条件满足,则:1)起动偏航系统;2)对变桨距风力发电机组,接通变桨距系统压力阀。

暂停→运行如果运行的条件满足,则:1)核对风力发电机组是否处于上风向;2)叶尖阻尼板回收或变桨距系统投入工作;3)根据所测转速,发电机是否可以切入电网。

2.工作状态层次下降工作状态层次下降包括3种情况:(1) 紧急停机。

紧急停机也包含了3种情况,即:停止→紧停;暂停→紧停;运行→紧停。

其主要控制指令为:1)打开紧停电路;2)置所有输出信号于无效;3)机械刹车作用;4)逻辑电路复位。

(2) 停机。

停机操作包含了两种情况,即:暂停→停机;运行→停机。

暂停→停机1)停止自动调向;2)打开气动刹车或变桨距机构回油阀 (使失压)。

运行→停机1)变桨距系统停止自动调节;2)打开气动刹车或变桨距机构回油阀 (使失压)3)发电机脱网。

(3) 暂停。

主要控制指令为:1)如果发电机并网,调节功率降到0后通过晶闸管切出发电机;2)如果发电机没有并入电网,则降低风轮转速至0。

(三) 故障处理图3-8所示的工作状态转换过程实际上还包含着一个重要的内容:当故障发生时,风力发电机组将自动地从较高的工作状态转换到较低的工作状态。

故障处理实际上是针对风力发电机组从某一工作状态转换到较低的状态层次可能产生的问题,因此检测的范围是限定的。

为了便于介绍安全措施和对发生的每个故障类型处理,我们给每个故障定义如下信息:1 故障名称;2 故障被检测的描述;3 当故障存在或没有恢复时工作状态层次;4 故障复位情况 (能自动或手动复位,在机上或远程控制复位)。

(1)故障检测。

控制系统设在顶部和地面的处理器都能够扫描传感器信号以检测故障,故障由故障处理器分类,每次只能有一个故障通过,只有能够引起机组从较高工作状态转入较低工作状态的故障才能通过。

(2)故障记录。

故障处理器将故障存储在运行记录表和报警表中。

(3)对故障的反应。

对故障的反应应是以下三种情况之一:1)降为暂停状态;2)降为停机状态;3)降为紧急停机状态。

(4)故障处理后的重新起动。

在故障已被接受之前,工作状态层不可能任意上升。

故障被接受的方式如下:如果外部条件良好,一些外部原因引起的故障状态可能自动复位。

一般故障可以通过远程控制复位,如果操作者发现该故障可接受并允许起动风力发电机组,他可以复位故障。

相关主题