当前位置:文档之家› 磁悬浮技术的原理(扬大)

磁悬浮技术的原理(扬大)


两自由度无轴承电机
1
2 3 4 5 6 7 8 10 11 12 13 14 15 16 9 17
多自由度无轴承电机
3.磁悬浮列车技术
4.磁悬浮飞机
特点: 1)运行中离开轨道 比磁悬浮列车更高, 距离有8至15厘米, 如同在轨道上“飞 行”; 2)时速非常高,可 达550公里/小时; 3)具有飞机的特点,如列车两侧有“牙翼”,有点像飞机翅 膀,尾部还有起平衡作用的“尾翼”,其ห้องสมุดไป่ตู้动控制系统、方向 舵、车厢、卫星定位系统等设备都是按飞机标准设计的,具有 无噪音、无污染、速度快、节约能源等优点。
5.其它应用技术
此外,磁悬浮技术的应用还有磁悬浮主 轴系统、磁悬浮飞轮、磁悬浮减振器、 磁悬浮电梯、磁悬浮风机(泵)、磁悬 浮发电、磁悬浮关节、磁悬浮直线电 机…………….。
三、磁悬浮技术发展现状
1.国内外的研究现状
1)磁悬浮列车 1842年英国物理学家恩休首先提出磁悬浮概念; 1922年德国工程师赫尔曼.肯佩尔提出了电磁悬浮原 理,并于1934年申请了磁悬浮列车专利; 20世纪60年代,世界上出现了3个载人的气垫车实验 系统,它是最早对磁悬浮列车进行研究的系统。 1969年,德国牵引机车公司研制出小型磁悬浮列车 系统模型,并在1km轨道上时速达165 km,这是磁 悬浮列车发展的第一个里程碑。 1994年2月,日本的电动悬浮式磁悬浮列车,在一 段74 km长的试验线上,创造了时速431 km的日本 最高记录。
N 2 A L2 g0 x
( Ni2 ) 2 A F2 ( g 0 x) 2
电磁力变化
电磁合力
2 2 i i 2 1 2 F F1 F2 N A 2 2 ( g 0 x) ( g 0 x)
2)永磁式被动磁悬浮
永磁被动悬浮力计算
0 AU U R0 x
3)无轴承电机
自1991年以来,瑞士、日本、美国、德国等国家先后提出 和研制了不同类型的无轴承电机。相继提出了内外置永磁型、 感应型、磁阻型、同步磁阻型、永磁同步型等磁轴承。并进 行了一些测量比较,提出了控制结构;
国内对磁轴承的研究起步较晚,同外国相比有一定的差距。 目前,西安交通大学、南京航空航天大学已成功研制了无轴 承电机的样机,但到目前为止,对磁悬浮技术的利用还只停 留在实验室的研究阶段,在轴承刚度和承载能力方面距离大 规模应用还有一定距离。
U
i i
U
混合型主动磁悬浮工作原理图
2U 2 g0 U N F 0 A 2 2 2 x 2 2 i g0 x ( g0 x )
混合磁悬浮轴承结构
永磁电磁混合磁悬浮系统
4.超导式磁悬浮技术 (1)超导的基本特性 1)零电阻效应 T<Tc 导体为超导态,导体处于无电阻状态 Tc ——超导的临界转变温度, Tc见表所示,常用 的铋系2223,临界最高温度为110K。 T>Tc 导体为正常态 许多金属和合金在低温情况下都会出现超导现象。 低温超导:冷却温度低于30K,一般用液氦冷却, 成本高; 高温超导:冷却温度在30K以上,可用液氮冷却, 成本低。
1999年4月日本研制的超导磁悬浮列车在实验线上达 到时速552 km,德国经过20年的努力,技术上已趋 成熟,已具有建造运营线路的水平。 1989年3月,国防科技大学研制出我国第一台磁悬浮 试验样车。 1995年,我国第一条磁悬浮列车试验线在西南交通 大学建成,并且成功进行了稳定悬浮、导向、驱动 控制和载人运行等时速为300 km的试验。标志我国 已经掌握了制造磁悬浮列车的技术。 2001年,西南交通大学研制的高温超导磁悬浮列车 样机实验成功。
2)磁悬浮轴承
国际上对磁悬浮轴承的研究工作也非常活跃。1988 年召开了 第一届国际磁悬浮轴承会议,此后每两年召开一次。1991年, 美国航空航天管理局还召开了第一次磁悬浮技术在航天中应 用的讨论会。现在,美国、法国、瑞士、日本和我国都在大 力支持开展磁悬浮轴承的研究工作。 国内对磁悬浮轴承的研究工作起步较晚,尚处于实验室阶段, 落后外国约20年。1986年,广州机床研究所与哈尔滨工业大 学首先对“磁力轴承的开发及其在FMS中的应用”这一课题 进行了研究。此后,清华大学、西安交通大学、天津大学、 山东科技大学、南京航空航天大学等都在进行这方面的研究 工作。
2.磁悬浮的发展趋势
1)超导磁悬浮技术
2)磁悬浮控制技术
3)磁悬浮应用技术
磁悬浮技术的原理及应用现状
曾 励
——扬州大学机械工程学院
主要报告内容
一、磁悬浮系统的组成原理 二、磁悬浮技术的应用现状 三、磁悬浮技术的发展趋势
一、磁悬浮系统的组成原理
悬浮: 磁悬浮、电悬浮、气悬浮
磁悬浮基于磁拉(斥)力而悬浮,如图 所示。
x, F
x0

U
2 U 2 0 A F 2 dx 20 A 2 ( x0 x)2 2 dR
U

x0
x, F
F
g
2 dR U 2 0 w 2
2 dx 2g
g 2 w( x0 x)2
磁悬浮技术类型: 1.主动磁悬浮技术 2.被动磁悬浮技术 3.混合磁悬浮技术 4.超导磁悬浮技术
1.主动磁悬浮技术
采用闭环主动控制方式使悬浮体的 姿态、动静态特性等达到期望要求。 即:连续地或断续地测量悬浮体的位 置,通过伺服装置迅速地控制场力, 使悬浮体相对其要求位置的偏移不超 过应许的范围。伺服控制悬浮又叫有 源悬浮,如图1所示。
2.被动磁悬浮技术
不另外提供控制能源,靠自身磁场能 量支承悬浮体。又叫无源悬浮。 1)电磁式:通过调整自身激磁电路本 身参数来实现固有稳定的悬浮。 2)永磁式:利用永磁体提供磁场能量 悬浮物体。 无源悬浮仅在偏离要求位置一定的范 围内稳定。
1)电磁式被动型磁悬浮技术
图2 电磁式被动型磁悬浮组成图
电磁式被动型磁悬浮工作原理图
N 2 A L2 g0 x
N 2 A L1 g0 x
N 2 A L2 g0 x
N 2 A L1 g0 x
电磁式被动型磁悬浮电流电感关系图
电磁式被动磁悬浮轴承的工作原理
右侧 左侧
电感变化
N 2 A L1 g0 x
( Ni1 ) 2 A F1 ( g 0 x) 2
(3)超导式磁悬浮系统组成
超导绕组 与常导绕 组组合可 实现“零 功率”悬 浮
二、磁悬浮技术的应用
1. 磁悬浮轴承技术
磁悬浮轴承支承的主轴系统
飞轮贮能系统结构
磁悬浮轴承主轴结构
2.无轴承电机技术
无轴承电机基本结构 示意图
飞轮贮能系统结构比较
无轴承密封泵
无轴承人工血泵
两自由度无轴承电机
2)完全抗磁性
完全抗磁性即迈斯纳效应:导体过渡到超导态时,原来进 入此导体中的磁力线会一下子被完全排斥到超导体之外,超 导体内磁感应强度变为零。
抗磁性的磁悬浮原理:
3)临界磁场Hc 超导态除决定温度外,还与外磁场有关。 T<Tc , H<Hc 保持超导态; H>Hc 超导态转变为正常态 (2)超导产生悬浮力的方式 1)基于迈斯纳效应完全抗磁性的低温超导斥力悬浮 2)基于部分抗磁性和钉扎性的高温超导斥力悬浮 3)基于钉扎力的高温超导吸力悬浮
主动磁悬浮系统
2 I12 I2 F F1 F2 N 0 A 2 2 ( g g ) ( g g ) 0 2 0 1 2
磁悬浮轴承的工作原理
磁悬浮轴承工作原理图 悬浮力:
2 2 ( I i ) ( I i ) 2 F F1 F2 N 0 A 2 2 ( g x ) ( g x ) 0 0
U
x
U 2 0 A 1 2 F 2 2 0 A x2
永磁磁悬浮直流电机
永磁磁悬浮轴 承结构
径向悬浮力与径向偏移量的关系
轴向悬浮力与轴向位移的关系
3.混合磁悬浮系统
为了提高无源悬浮的刚度,或者, 因为无源悬浮仅在偏离要求位置一定 的范围内稳定的,可以将伺服控制叠 加在无源悬浮上,即有源和无源混合 组成主动控制的混合磁悬浮系统。
相关主题