51单片机复位电路
单片机在可靠的复位之后,才会从0000H地址开始有序的执行应用程序。
同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。
因此,复位电路应该具有两个主要的功能:
1.必须保证系统可靠的进行复位;
2.必须具有一定的抗干扰的能力;
一、复位电路的RC选择
复位电路应该具有上电复位和手动复位的功能。
以MCS-51单片机为例,复位脉冲的高电平宽度必须大于2个机器周期,若系统选用6MHz晶振,则一个机器周期为2us,那么复位脉冲宽度最小应为4us。
在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量。
图1是利用RC充电原理实现上电复位的电路设计。
实践证明,上电瞬间RC电路充电,RESET引脚出现正脉冲。
只要RESET端保持10ms以上的高电平,就能使单片机有效的复位。
二.供电电源稳定过程对复位的影响
单片机系统复位必须在CPU得到稳定的电源后进行,一次上电复位电路RC参数设计应考虑稳定的过渡时间。
为了克服直流电源稳定过程对上电自动复位的影响,可采用如下措施:
(1)将电源开关安装在直流侧,合上交流电源,待直流电压稳定后再合供电开关K,如图3所示。
(2)采用带电源检测的复位电路,如图4所示。
合理配置电阻R3、R4的阻值和选择稳压管DW的击穿电压,使VCC未达到额定值之前,三极管BG截止,VA点电平为低,电容器C不充电;当VCC稳定之后,DW击穿,三极管BG饱和导通,致使VA点位高电平,对电容C充电,RESET为高电平,单片机开始复位过程。
当电容C上充电电压达到2V 时,RESET为低电平,复位结束。
三.并联放电二极管的必要性
在图1复位电路中,放电二极管D不可缺少。
当电源断电后,电容通过二极管D迅速放电,待电源恢复时便可实现可靠上电自动复位。
若没有二极管D,当电源因某种干扰瞬间断电时,由于C不能迅速将电荷放掉,待电源恢复时,单片机不能上电自动复位,导致程序运行失控。
电源瞬间断电干扰会导致程序停止正常运行,形成程序“乱飞”或进入“死循环”。
若断电干扰脉冲较宽,可以使RC迅速放电,待电源恢复后通过上电自动复位,使程序进入正常状态;若断电干扰脉冲较窄,断电瞬间RC不能充分放电,则电源恢复后系统不能上电自动复位。
四.I/O接口芯片的延时复位
在单片机系统中,某些I/O接口芯片的复位端口与单片机的复位端口往往连在一起,即统一复位。
接口芯片由于生产厂家不同,复位时间也稍有不同;复位线较长而又较大的分布电容,导致这些接口的复位过程滞后于单片机。
工程实践表明,当单片机复位结束立即对这些I/O芯片进行初始化操作时,往往导致失败。
因此,当单片机进入0000H地址后,首先执行1-10ms的软件延时,然后再对这些I/O芯片进行初始化。