碳纳米管及其应用
3) 热学性能 一维管Байду номын сангаас有非常大的长径比,因而大量热是沿着长度方向 传递的,通过合适的取向,这种管子可以合成高各向异性材料。 虽然在管轴平行方向的热交换性能很高,但在其垂直方向的热 交换性能较低。纳米管的横向尺寸比多数在室温至150oC电介 质的品格振动波长大一个量级,这使得弥散的纳米管在散布声 子界面的形成中是有效的,同时降低了导热性能。适当排列碳 纳米管可得到非常高的各向异性热传导材料。
LOG O
谢谢! 谢谢
导电塑料(聚脂 导电塑料 聚脂): 聚脂 将碳纳米管均匀地扩散到塑料中,可获得强度更高并具有导 电性能的塑料,可用于静电喷涂和静电消除材料,目前高档 汽车的塑料零件由于采用了这种材料,可用普通塑料取代原 用的工程塑料,简化制造工艺,降低了成 本,并获得形状 更复杂、强度更高、表面更美观的塑料零部件,是静电喷涂 塑料 (聚脂 )的发展方向。 由于碳纳米管复合材料具有良好的导电性能,不会象绝缘塑 料产生静电堆积,因此是用于静电消除、晶片加工、磁盘制 造及洁净空间等领域的理想材料。碳纳米管还有静电屏蔽功 能,由于电子设备外壳可消除外部静电对设备的干扰,保证 电子设备正常工作。
2) 锂离子电池 碳纳米管的层间距为0.34nm,略大于石墨的层间距0.335nm,这 有利于Li+的嵌入与迁出,它特殊的圆筒状构型不仅可使Li+从外壁 和内壁两方面嵌入,又可防止因溶剂化Li+嵌入引起的石墨层剥离 而造成负极材料的损坏。碳纳米管掺杂石墨时可提高石墨负极的 导电性,消除极化。 在锂离子电池中加入碳纳米管,也可有效提高电池的储氢能力 ,从而大大提高锂离子电池的性能。根据实验,多壁碳纳米管锂电池 放电能力达到385 mA·h/g,单壁管则高达640mA·h/g,而石墨的理 论放电极限为372 mA·h/g。
碳纳米管及其应用
主要内容:
1. 碳纳米管的发现 2. 碳纳米管结构 3. 碳纳米管结构的表征 4. 碳纳米管的生产方法 5. 独特性质 6. 应用前景
1. 碳纳米管的发现
C60及富勒烯化合物
1985年英国Sussex大学的Kroto教授 和美国Slice大学的Smalley教授发现
碳纳米管(CNTs)
碳纳米管的应用前景
1) 超级电容器 碳纳米管比表面积大、结晶度高、 导电性好,微孔大小可通过合成工艺 加以控制,是一种理想的电双层电容 器电极材料。由于碳纳米管具有开放 的多孔结构,并能在与电解质的交界 面形成双电层,从而聚集大量电荷, 功率密度可达8000W/kg。碳纳米管 超级电容器是已知的最大容量的电容 器。
3) 碳纳米管复合材料 基于纳米碳管的优良力学性能可将其作为结构复合材料的 增强剂。研究表明,环氧树脂和纳米碳管之间可形成数百MPa 的界面强度。 除做结构复合材料的增强剂外,纳米碳管还可做为功能增 强剂填充到聚合物中,提高其导电性、散热能力等如:在共轭 发光聚合物中添加纳米碳管后,不但其导电率大大提高,强度 也得到了改善。同时,由于纳米碳管在纳米尺度散热,避免了 局部形成的热积累,可防止共轭聚合物中链的断裂,从而抑制 聚合物的光褪色作用。
1991年,日本科学家饭岛(Iijima)发现,在《Nature》发表 文章公布了他的发现成果,这是碳的又一同素异型体。
2.碳纳米管结构
1)按形态分
普通封口型 变径型
洋葱型
海胆型
竹节型
念珠型
纺锤型
螺旋型
其他异型
2)按手性分
通常依照n ,m 的相对关系,将单 壁碳纳米管分为 achiral 和chiral 两 个基本类型。 Achiral 型又分为zigzag (锯齿型) 和armchair(扶手椅型) 两类。当 n 和m 其中之一为0 时,为zigzag 型;当n=m 时为armchair 型;其它 所有情况都称为chiral 型( 手性管)。
碳纳米管的独特性质
1)力学性 能 碳纳米管的抗拉强度达到50~200GPa,是钢
的100倍,密度却只有钢的1/6,至少比常规石墨纤 维高一个数量级。它是最强的纤维,在强度与重 量之比方面,这种纤维是最理想的。
2) 电学性能 由于碳纳米管的结构与石墨的片层结构相同,所以具有 很好的电学性能。理论预测其导电性能取决于其管径和管壁 的螺旋角。当CNTs的管径大于6mm时,导电性能下降;当 管径小于6mm时,CNTs可以被看成具有良好导电性能的一 维量子导线。
4) 储氢性能 碳纳米管的中空结构,以及较石墨(0.335nm)略大的层 间距(0.343nm),是否具有更加优良的储氢性能,也成为科 学家们关注的焦点。 1997年,A. C. Dillon对单壁碳纳米管(SWNT)的储氢 性能做了研究,SWNT在0℃时,储氢量达到了5%。 DeLuchi指出:一辆燃料机车行驶500km,消耗约31kg的 氢气,以现有的油箱来推算,需要氢气储存的重量和体积 能量密度达到65%和62kg/m3。 这两个结果大大增加了人们对碳纳米管储氢应用前景 的希望。
Armchair (n,m)=(5,5) Zigzag (n,m)=(9,0)
按照石墨烯片的层数,可分为: 3) 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs): 由一层石墨烯片组成。单壁管典型的直径和长度分别为 0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs): 含 有多层石墨烯片。形状象个同轴电缆。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距 (0.34nm) 相当。多壁管的典型直径和长度分别为2~30nm和0.1~ 50μm。
燃烧火焰法
利用液体(乙醇、甲醇等)、气体(乙炔、乙烯、甲烷等) 和固体(煤炭、木炭)等产生火焰分解其碳-氢化合物获得游历 碳原子,为合成碳纳米管提供碳源;然后将基板材料做适当处 理,最后将基板的一面向下,面向火焰放入火焰中,燃烧一段 时间后取出。基板上的棕褐(黑)色既是碳纳米管或碳纳米纤 维。 产生碳纳米管或碳纳米纤维的过程主要决定于基板的性质。 基板的选择和处理、燃料的选择等是本方法的关键技术。 优点有:合成过程无需真空、保护气氛;无需催化剂;可以在 大的表面上合成,特别适合于在一个平面上形成一层均匀的碳 纳米管或碳纳米纤维薄膜; 成本较低,对环境的污染也非常小。 可以实现大批量合成。
4) 电磁干扰屏蔽材料及隐形材料 碳纳米管是一种有前途的理想微波吸收剂,可用于隐形材 料、电磁屏蔽材料或暗室吸波材料。 碳纳米管对红外和电磁波有隐身作用的主要原因有两点: 一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此 纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大 减少波的反射率,使得红外探测器和雷达接收到的反射信号变得 很微弱,从而达到隐身的作用; 另一方面,纳米微粒材料的比表面积比常规粗粉大3~4个数 量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使 得红外探测器及雷达得到的反射信号强度大大降低,因此很难发 现被探测目标,起到了隐身作用。由于发射到该材料表面的电磁 波被吸收,不产生反射,因此而达到隐形效果。
5) 催化剂载体 纳米材料比表面积大,表面原子比率大(约占总原子数的 50%),使体系的电子结构和晶体结构明显改变,表现出特殊的电 子效应和表面效应。如气体通过碳纳米管的扩散速度为通过常 规催化剂颗粒 的上千倍,担载催化剂后极大提高催化剂的活性 和选择性。 碳纳米管作为纳米材料家族的新成员,其特殊的结构和表面 特性、优异的储氢能力和金属及半导体导电性,使其在加氢、 脱氢和择型催化等反应中具有很大的应用潜力。碳纳米管一旦 在催化上获得应用,可望极大提高反应的活性和选择性,产生巨 大的经济效益。
3.纳米管结构的表征: 纳米管结构的表征: 纳米管结构的表征
扫描隧道显微镜 X射线衍射 孔结构及比表面积 电子衍射 拉曼光谱
4.碳纳米管的生产方法简介
石墨电弧法 浮动催化法 (即碳氢化合物催化分解法,又称CVD法) 即碳氢化合物催化分解法,又称 法 激光蒸汽法 燃烧火焰法
石墨电弧法
基本原理: 基本原理: 电弧室充惰性气体保护,两石 墨棒电极靠近,拉起电弧,再 拉开,以保持电弧稳定。放电 过程中阳极温度相对阴极较高, 所以阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出含有 碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电流60A~100A, 电压19V~25 V,电极间距1 mm~4mm,产率50%。Iijima等生产 出了半径约1 nm的单层碳管。