当前位置:文档之家› 03 蜡油加氢裂化装置学生版xch

03 蜡油加氢裂化装置学生版xch

28
920
1
注:*表示间断用量。
1.4.2
电用量见表1-4。
表1-4电用量
序号
电压V
轴功率kW
备注
1
6000V
12750
2
380V
2100
3
220V
150
合计
15000
1.4.3
装置蒸汽用量见表1-5。
表1-5蒸汽用量
蒸汽负荷(t/h)
0.4MPa
1.0MPa
3.5MPa
汽包产汽
用汽
汽包
产汽
背压
产汽
本装置高压空冷器管箱为板焊丝堵式结构。根据操作条件,管箱材料采用碳钢,换热管材料为碳钢。为防止NH3(H2S)的腐蚀,在每根换热管的入口端设置一段不小于600mm长的不锈钢衬管。
(6)压缩机
压缩机是装置中关键机械设备。新氢压缩机选用往复式,开二备一,为保证装置长周期稳定运行,考虑新氢压缩机由国外引进;循环氢压缩机选用背压式蒸汽透平驱动离心式压缩机一台,由国内生产。
表3.2-1主要操作条件
项目
操作条件
精制段
裂化段
后精制段
催化剂
UF-210stars
HC-115
UF-310
体积空速,h-1(对新鲜进料)
工艺流程
单段全循环
工艺条件
混合进料比
1.7
高压分离器压力,MPa
15.2
反应器入口氢油比
713:1
反应温度,℃
精制段:初期375,末期420;
裂化段:初期397,末期428;
分馏塔进料加热炉设计负荷52000 kW,考虑采用立管单排单面辐射管结构型式。
根据炉子的工艺特点,初步选用Φ168管径4管程。
分馏塔进料加热炉采用立管立式炉,循环氢加热炉排出的高温烟气进入分馏塔进料加热炉对流室,回收烟气余热。
(5)冷换设备
本装置高压换热器的管程、壳程均属高压的有10台,管程高压、壳程低压的有4台。根据操作条件,管、壳程壳体的主体材料分别选用2.25Cr-1Mo,换热管材料选用oCr18Ni10Ti。管程采用螺纹锁紧环式结构。
原料油换热系统采用注阻垢剂设施。
航煤出装置线均匀加入抗氧剂。
采用循环氢聚结除液设施。
催化剂采用器外再生。
为确保催化剂、高压设备及操作人员的安全,设置两个压力等级的紧急泄压系统。
2.1.2
(1)反应部分
原料油与柴油换热后通过原料油自动反冲洗过滤器除去大于25μm的固体颗粒,进入原料油缓冲罐,经反应进料泵升压后与反应流出物换热,再与经过换热和加热的循环氢混合,然后进入加氢反应器进行加氢精制、加氢裂化反应。反应流出物与原料油、循环氢换热至适宜温度进入热高压分离器。反应流出物在热高压分离器进行气、液分离,热高分气体与冷低分油换热、冷却后进入冷高压分离器进行油、水、气三相分离。冷高分气经循环氢压缩机入口分液罐去循环氢压缩机升压;冷高分水至酸性水汽提装置统一处理;冷高分油至冷低压分离器进一步闪蒸,冷低分气去脱硫塔;冷低分水与冷高分水一起至酸性水汽提装置统一处理。
冷低分油与热高分气换热后至分馏部分。热高分油至热低压分离器进一步闪蒸,热低压分离器气相与热水换热,并冷却后至冷低压分离器。热低压分离器液体直接至分馏部分。
新氢经新氢压缩机升压后与循环氢压缩机来的循环氢混合,一路用作混合氢气,另一路用作反应器的急冷氢。
参见附图3-1。
(2)分馏部分
来自反应部分的低分油进汽提塔,塔底通入水蒸汽汽提,脱除H2S。塔顶气相经空冷器、后冷器冷凝冷却后进汽提塔顶回流罐进行油、气、水三相分离,气体去轻烃回收装置进一步回收液化气;含硫污水去酸性水汽提装置统一处理;塔顶油相一部分送回塔顶作为回流,另一部分送至石脑油加氢精制装置。汽提塔底油作为主分馏塔进料。
1.1
蜡油加氢裂化装置。
1.2
装置规模为220×104t/a,实际加工量为219.78×104t/a。年操作时数8400小时。
1.3
1.3.1
装置加工原料油为常减压蒸馏装置的减一、减二和减三线蜡油219.78×104t/a。
1.3.2
产品品种及去向见表1-1。
装置产品:石脑油、航煤、柴油和尾油。
副产品:冷低分气脱硫后去PSA氢提浓装置,汽提塔顶气至轻烃回收装置。
根据炉子的工艺特点,初步选用Φ152管径8管程,最小壁厚16mm。
由于受循环氢压缩机出口压力的限制,要求尽量减少炉管压降,加氢反应进料加热炉均设计为纯辐射立式炉型,其排出的高温烟气进入分馏塔进料加热炉对流室,回收烟气余热。炉膛用一个单排双面辐射辐射室或两个单排双面辐射室。
(4)分馏塔进料加热炉
分馏塔进料加热炉管内介质为含氢量较低,操作出口温度377℃,操作出口压力为0.2MPa,在此工艺条件下,炉管材质采用T9。
原料油进装置后,首先经自动反冲洗过滤处理,除去大于25微米的颗粒状杂质,防止其沉积在催化剂表面,以减缓反应器压力降的增加,延长装置开工周期。
装置内原料油缓冲罐采用惰性气体保护,避免原料油与空气接触,以减轻原料油在换热器、加热炉管及反应器中的结焦程度。
分馏部分采用先汽提后分馏的四塔流程。
装置内设有冷低分气脱硫设施。
1.4
1.4.1
水用量见表1-3。
表1-3装置给排水用量表
用水地点
给水t/h
排水t/h
新鲜水
除氧水
除盐水
净化水
循环水
含油
污水
含盐
污水
含硫污水
循环
热水
生活
污水
水冷却器
900
900
机泵冷却
25
5
20
配制药剂
反应产物注水
11
11
22
1.0MPa蒸汽
48
汽提蒸汽
5
6
生活用水
1*
1
合计
1
48
11
11
925
10
冷高压分离器等高压容器均为锻焊结构,采用常规设计。主体材料选用16Mn(R-HIC)纯净钢。
(2)反应器
本装置反应器采用单系列,分别设有加氢精制反应器、加氢裂化反应器各一台,采用热壁锻焊结构。主体材质根据操作条件和Nelson曲线,确定为2.25Cr-1Mo-0.25V(SA336F22V),内壁堆焊TP.309L+TP.347,以防止高温H2S-H2腐蚀。反应器按应力分析法进行设计,反应器采用国产或进口,应根据项目工期要求及当时国内外市场的供货情况来确定。
装置
注汽
加热
用汽
汽包
产汽
汽机
用汽
装置
注汽
加热
用汽
-17
6
-28
-71
5
71
1.4.4
燃料用量见表1-6。
表3.1-6燃料用量
序号
使用地点
燃料油kg/h
燃料气kg/h
备注
1
循环氢加热炉
1176
(热值41.868MJ/kg)
2
分馏塔进料加热炉
4023
合计
5199
1.4.5
压缩空气用量见表1-7。
表1-7装置压缩空气用量
表3.2-2主要操作条件
名称
塔顶温度,℃
塔顶压力,MPa(G)
汽提塔
159
1.05
分馏塔
131
0.115
航煤汽提塔
204
0.13
柴油汽提塔
320
0.136
低分气脱硫塔
40
0.8
2.2
2.2.1
(1)容器
热高压分离器为热壁锻焊结构,主体材料选用SA336F22(2.25Cr-1Mo),内壁堆焊TP.309L+TP.347,按应力分析法进行设计。
压缩机厂房分两层布置,房内设置桥式吊车。
装置的所有管桥及构架均采用钢结构。
装置内留有足够的吊装检修用场地,以满足大型吊车接近与回旋。
反应构架上方设置单轨电动吊车与手动葫芦,大型泵的上方设置有检修用手动葫芦或检修吊梁,以方便检修与维护。
管桥成组合式布置,仪表电缆、电气电缆拟以槽盒的形式布置在管桥最上层,便于检修和维护,同时节省地下空间,所有设备与建、构筑物均沿管桥两侧布置;管桥下设置泵房。
(7)机泵
原料油泵由于介质包括新鲜进料和循环油,且温度较高、流量大、扬程高,所以应选用双壳体多级离心泵。鉴于国内大泵的制造技术与国外相比还存在一定差距,为保证装置长周期运转,本可研推荐引进反应进料泵。
(8)设备防腐措施
加氢裂化装置中,通常见到的腐蚀现象有氢腐蚀和硫化氢腐蚀,在许多设备及管道中则存在着这两种介质的同时腐蚀。在高温高压下,氢对钢有强烈的脆化作用,腐蚀的程度取决于操作温度、氢分压及合金元素的添加情况;硫化氢的腐蚀程度主要取决于硫化氢的浓度和操作温度。浓度越大腐蚀越厉害。对于温度来说,200~250℃以下不含水的硫化氢气体,对钢铁不产生腐蚀或腐蚀甚微。当温度大于260℃时,腐蚀加快。装置设备设计按API941《临氢作业用钢防止脱碳和开裂的操作极限》曲线(Nelson曲线)选用相应的材料;凡有高温H2S+ H2腐蚀的部位,材料的腐蚀率按照柯珀(Couper)曲线进行估算,采用内壁堆焊309L+347L等相应的防腐措施;在湿硫化氢应力腐蚀和氢致开裂环境下工作的设备,其主体材质采用16MnR(R-HIC)或16Mn(R-HIC)纯净钢。
序号
项目
压力
MPa(g)
连续Nm3/min
间断Nm3/min
正常
最大
正常
最大
1
净化压缩空气
0.6
6
2
非净化压缩空气
0.6
20
合计
6
20
1.4.6
装置氮气用量见表1-8。
相关主题