《传递过程原理》课程第一次作业参考答案(P56)1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。
2. 判断以下流动是否可能是不可压缩流动(1) ⎪⎩⎪⎨⎧-+=--=++=zx t u z y t u yx t u z y x 222 (2) ()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211t tz u xy u x y u z y x ρρρρ3.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
(1)在矩形截面流道内,可压缩流体作定态一维流动;(2)在平板壁面上不可压缩流体作定态二维流动;(3)在平板壁面上可压缩流体作定态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向定态流动;(5)不可压缩流体作圆心对称的径向定态流动。
《化工传递过程导论》课程作业第三次作业参考P-573-1流体在两块无限大平板间作定态一维层流,求截面上等于主体速度u b的点距离壁面的距离。
又如流体在圆管内作定态一维层流,该点距离壁面的距离为若干?距离壁面的距离02(12d r =-3-2温度为20℃的甘油以10kg/s 的质量流率流过长度为1m ,宽度为0.1m 矩形截面管道,流动已充分发展。
已知20℃时甘油的密度ρ=1261kg/m 3,黏度μ=1.499Pa·s 。
试求算(1)甘油在流道中心处的流速以及距离中心25mm 处的流速; (2)通过单位管长的压强降;2max 012P u y xμ∂=-∂流动方向上的压力梯度Px∂∂的表达式为:max 22u Px y μ∂=-∂ 所考察的流道为直流管道,故上式可直接用于计算单位管长流动阻力:fP L∆,故: -1max 22022 1.4990.119142.7Pa m 0.1()2f P u P P L x L y μ∆∂∆⨯⨯=-=-===⋅∂ (3) 管壁处剪应力为:2max max 002[(1())]xy y y yu u yu yy y y μτμτμ==∂∂=-⇒=--=∂∂ max 2022 1.4990.119N 7.135m 0.12u y μτ⨯⨯⇒===故得到管壁处的剪应力为2N7.135m《化工传递过程导论》课程第四次作业解题参考(P122)2. 常压下,20℃的空气以5m/s 的速度流过一光滑的平面,试判断距离平板前缘0.1m 和0.2m 处的边界层是层流还是湍流。
在符合精确解的条件下,求出相应点处边界层的厚度,以及u x /u 0=0.5处的y 值。
解:常压下,20℃的空气常数为:-31.205kg m ρ=⋅,618.110Pa s μ-=⨯⋅(1)确定边界层内流型(a) 距平板前缘0.1m 处,由题意可得 4500.161.20550.1Re3.331021018.110x m u x ρμ=-⨯⨯===⨯<⨯⨯ 显然边界层为层流。
(b) 距平板前缘0.2m 处,由题意可得4500.261.20550.2Re6.661021018.110x m u x ρμ=-⨯⨯===⨯<⨯⨯ 显然边界层为层流。
(2)满足精确解的条件下,相应点处的边界层厚度(a) 距平板前缘0.1m 处,由题意可得114220.1 5.0Re 5.00.1(3.3310)0.002740.1x mx x m mm δ--==⋅⋅=⨯⨯⨯=(b) 距平板前缘0.2m 处,由题意可得 114220.2 5.0Re 5.00.2(6.6610)0.003880.2x m x x m mmδ--==⋅⋅=⨯⨯⨯=由计算结果可以看出,x δ,普朗特采用的数量级分析方法是合理的。
(3)当0'0.5x u f u ==时,查表内插可得: 1.534η=,且1y ηη-==⋅, 其中652-118.1101.50210m s 1.205μυρ--⨯===⨯⋅。
(a) 距平板前缘0.1m 处,由题意可得1140.1 1.5348.40810x m y m η---==⋅=⨯=⨯ (b) 距平板前缘0.2m 处,由题意可得1130.2)1.53)1.189100.2x m y m η---==⋅=⨯=⨯7.常压下,温度为40℃的空气以12m/s的均匀流速流过长度为0.15m,宽度为1m的光滑平板,试求算平板上、下两面总共承受的曳力。
12. 在20℃和1.0132×105 Pa 下的空气,以3. 5m/s 的速度平行流过平板,试从布拉修斯的精确解和假定速度分布为3031()()22x u y y u δδ=-的卡门积分近似解中,比较x =1m 处的边界层厚度和局部阻力系数。
解:由查表可知,020C 下空气物性为:-31.205kg m ρ=⋅,618.110Pa s μ-=⨯⋅55061.205 3.51Re 2.331051018.110x u x ρμ-⨯⨯===⨯<⨯⨯,属层流边界层问题 (1)精确解x =1m 处的边界层厚度计算()115221 5.0Re 5.01 2.33100.01x x m δ--=⋅⋅=⨯⨯⨯=局部阻力系数()11153220.664Re 0.664 2.33101.37610Dx x C ---=⋅=⨯⨯=⨯(2)卡门积分近似解x =1m 处的边界层厚度计算()1153222 4.64Re 4.641 2.33109.61310x x m δ---=⋅⋅=⨯⨯⨯=⨯局部阻力系数()2112125302222200220.323Re 0.646Re 0.646 2.3310 1.338102sxsx x Dx x u C u u u ττρρρρ----⨯=====⨯⨯=⨯经比较可得:1δ与2δ,1Dx C 与2Dx C 相差均不大。
13. 某黏性流体以速度u 0定态流过平面壁面形成层流边界层,已知边界层的速度分布可用cy b a u x sin +=描述,试采用适当的边界条件,确定待定系数a 、b 、c 的值。
解:为确定a 、b 和c 三个待定系数,需要三个边界条件(1)壁面流体无滑移00(1)x y y u u =⇒==⋅⋅⋅⋅⋅⋅(2)边界层外缘渐近条件且速度梯度为零0(2)x y u u δ=⇒=⋅⋅⋅⋅⋅⋅0(3)xdu dy=⋅⋅⋅⋅⋅⋅ 由(1)式可得:s i n 000x u a b c y a a =+⇒=+⇒=且0b c ⋅≠得到 sin (4)x u b cy =⋅⋅⋅⋅⋅⋅由(2)式可得: 0sin (5)u b c δ=⋅⋅⋅⋅⋅⋅(4)式对y 求导并合并(5)式可得:00sin 1sin sin (6)sin sin sin x x u u b cy cy u cy u b c c c δδδ==⇒=⋅⋅⋅⋅⋅⋅ 0cos (7)sin x du u ccy dy c δ⇒=⋅⋅⋅⋅⋅⋅即可得到00cos 0cot (8)sin x y du c u cu c c dyc δδδδ==⇒=⋅⋅⋅⋅⋅⋅12(2)(0,1,...,)(9)22c k c k k n ππδππδ⇒=+⇒=+=⋅⋅⋅⋅⋅⋅ 将(9)式代入(5)式,并且按照物理意义和函数取值特性判断取0k =,可得000sin sin(2)(10)2u b c u b k u b πδπ=⇒=+⇒=⋅⋅⋅⋅⋅⋅综合可得:0a =,0b u =,2c πδ=化工传递过程导论》课程第5次作业解题参考第6章 热传导2. 用平底锅烧开水,与水相接触的锅底温度为111℃,热流通量为42400W/m 2。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢,假设此时与水相接触的水垢的表面温度及热流通量分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1 W/(m·K)。
解:由题意可以想见,原来无水垢时是对流传热;结垢后垢层中为导热,此时定态、一维平板的传热通量为()1S q kT T A L⎛⎫=- ⎪⎝⎭其中, L 为垢层的厚度,T 1为水垢与金属锅底接触面的温度(未知),T S 为与水相接触的垢层表面温度。
因此可得1S q LT T A k⎛⎫=+ ⎪⎝⎭31310111424001T -⨯⇒=+⨯1238.2o T C ⇒=故得出水垢与金属锅底接触面的温度为238.2o C3. 有一管道外径为150mm ,外表面温度为180℃,包覆矿渣棉保温层后外径为250mm 。
已知矿渣棉的导热系数0.0640.000144k T =+W/(m·K),T 单位为℃。
保温层外表面温度为30℃,试求包有保温层后管道的热损失。
解: 本题考虑对象为保温层,其中为定态、一维筒壁、无内热源导热问题,可以有多种解法。
与书中讨论不同的是,导热系数并非常数,而是随温度变化。
首先,形式上,将题给导热系数写作()0(1)0.06410.00225k k t t β=+=+以下分别给出几种解法。
第一解法:精确解定态下,传热速率为常数,也即单层圆筒壁热传导02(1)2dtk rLq Const drdtk t rL qπβπ-==-+⋅⋅=22000225180301803022006401502514598[J/s m]14598[W/m].()()q..Lln ...π-+-⇒=-⋅⋅=⋅=解:方法1:由题意,有均匀内热源的平板一维、定态热传导。
控制方程为220T qx k∙∂+=∂ 设定平板中心为坐标原点,可得到边界层条件0.2x m =,70o T C =0.2x m =-,70o T C =且6321.210 3.18310377q k m k ∙⨯==⨯ 对原式积分,并代入边界条件,可得32(1.59210)133.68T x =-⨯+距平板中心0.1m 处的温度为32(1.59210)0.1133.68117.76o T C =-⨯⨯+=方法2:00,0()0.2,70343s t x xx L m t t C K∂⎧==⎪∂⎨⎪=====⎩对称,极值条件 积分控制方程:])/(1[2`])/(1[2`)()2/`()(2)/`(2)/`(0)/`(2222222221211L x kLq t t L x kLq L x k q t t C L k q t C x C x k q t C C x k q dxdts s s -+=-=-⋅-=-∴+⋅-=++⋅-==⇒+⋅-=62201210020.1343[1-()]391K 11776C 23770.2..t .⨯⨯=+==⨯ 本题的温度分布如下所示:《化工传递过程导论》课程第6次作业解题参考解:局部传热系数为当地的点值,平均传热系数为一段区间上的均值。