当前位置:
文档之家› 土壤中分解尿素的细菌的分离和计数(整理)
土壤中分解尿素的细菌的分离和计数(整理)
点此播放教学视频
例2.在微生物群体生长规律的测定中,种内 斗争最显著最激烈的时期是 答案:C A.调整期 B.对数期 C.稳定期 D.衰亡期
解析:种内斗争是一种生态因素。种内斗争反应了种内生物 对生存空间和生活资源的争夺。在生活空间充裕,营养充足的时 候,种内斗争的程度是比较低的。随着微生物个体数目的增加, 每个个体的生存空间越来越少,营养物质也越来越少,每个个体 对生存空间和资源的争夺也越来越激烈,种内斗争就越来越激烈。 由此可知,在稳定期的种内斗争最激烈。在衰亡期,微生物的数 目已经开始减少,pH已经极度不适于微生物的生存,次级代谢产 物积累到很高的程度,这时的微生物的生存斗争主要是与无机环 境的斗争。
㈢.设置对照:
设置对照的主要目的是排除实验组中非测试因素 对实验结果的影响,提高实验结果的可信度。 实例:在做分解尿素的细菌的筛选与统计菌落数 目的实验时,A同学从对应的106倍稀释的培养基 中筛选出大约150个菌落,但是其他同学在同样 的稀释度下只选择出大约50个菌落。分析其原因。 原因:⑴土样不同,⑵培养基污染或操作失误 (或者是混入了其他的含氮物质)
思考:为什么分离不同的微生物要采用不同的稀 释度?测定土壤中细菌的总量和测定土壤中能分 解尿素的细菌的数量,选用的稀释范围相同吗? 是不同的。 结论:为获得不同类型的微生物,就需要按不 同的稀释度进行分离,同时还应当有针对性地 提供选择培养的条件。
原因:土壤中各类微生物的数量(单位:株/kg)
点此播放教学视频
另 2 个相差太远,说明在操作过程中可能出现了错误,
因此,不能简单地将 3 个平板的计数值用来求平均值。 这个实例启示学生,在设计实验时,一定要涂布至
少3个平板,作为重复组,才能增强实验的说服 力与准确性。在分析实验结果时,一定要考虑所设置
的重复组的结果是否一致,结果不一致,意味着操作有 误,需要重新实验。
(一)筛选菌株
水生耐热细菌Taq
启示?
耐高温的Taq DNA聚合酶
选择培养基
在微生物学中,将允许特定种类的微生
物生长,同时抑制或阻止其他种类微生 物生长的培养基。
点此播放教学视频
思考:
KH2PO4 NaH2PO4 MgSO4`7H2O 葡萄糖 尿素 琼脂 1.4g 2.1g 0.2g 10.0g 1.0g 15.0g
课题2 土壤中分解尿素的细菌的 分离与计数
点此播放教学视频
复习提问
1.培养基的概念和种类? 2.固体培养基和液体培养基的区别?固体 培养基在实验室的作用? 3.培养基的成分和特殊要求有哪些?举例 说明? 4.避免杂菌污染包括哪4个方面? 5.什么是消毒、灭菌?常见的消毒和灭菌 方法有哪些?
复习提问
所形成的一个菌落是由一个单细胞繁殖而成的,即一 个菌落代表原先的一个单细胞。 ⑵常用方法:稀释涂布平板法。
每克样品中的菌落数=(C÷V)×M
其中,C代表某一稀释度下平板上生长的平均菌落数,V代 表涂布平板时所用的稀释液的体积(ml),M代表稀释倍数。
说明设置重复组的重要性。在设计实验时,一定要涂布至少 3个
㈣.取样涂布
◆实验时要 对培养皿作 好标记。注 明培养基类 型、培养时 间、稀释度、 培养物等。
◆如果得到了2个或2个以上菌落数目在30——300的平板, 则说明稀释操作比较成功,并能够进行菌落的计数,如 果同一稀释倍数的三个重复的菌落数相差较大,表明试 验不精确,需要重新实验。
点此播放教学视频
㈤.微生物的培养与观察
用来判断选择培养基是否起到了选择作用需要设 置的对照是( ) C A.未接种的选择培养基 B.未接种的牛肉膏蛋白胨培养基 C.接种了的牛肉膏蛋白胨培养基 D.接种了的选择培养基
选C。将菌液稀释相同的倍数,在牛肉膏蛋白胨培 养基上生长的菌落数目应明显多于选择培养基上的 数目,因此,应选牛肉膏蛋白胨培养基作为对照。 对照遵循的是单一变量原则,所以与选择培养基一 样接种、培养。
点此播放教学视频
3.使用选择培养基的目的是( ) C A.培养细菌 B.培养真菌 C.使需要的微生物大量繁殖 D.表现某微生物的特定性状与其他微生物加以区别 4.能合成脲酶的微生物所需要的碳源和氮源分别是 ( ) A.CO2和N2 B.葡萄糖和NH3 D C.CO2和尿素 D.葡萄糖和尿素
点此播放教学视频
①从物理性质看此培养基属于哪类?
固体培养基
点此播放教学视频
②在此培养基中哪些作为碳源、氮源? 碳源:葡萄糖、尿素 氮源:尿素
3、培养基选择分解尿素的微生物的原理? 培养基的氮源为尿素,只有能合成脲酶的微生物 才能分解尿素,以尿素作为氮源。缺乏脲酶的微 生物由于不能分解尿素,缺乏氮源而不能生长发 育繁殖,而受到抑制,所以用此培养基就能够选 择出分解尿素的微生物。
点此播放教学视频
测定土壤中细菌数量一般选用104、105和 106倍的稀释液进行平板培养,而测定真菌 的数量一般选用102、103和104倍稀释, 其原因是( ) C A.细菌个体小,真菌个体大 B.细菌易稀释,真菌不易稀释 C.细菌在土壤中数量比真菌多 D.随机的,没有原因
点此播放教学视频
6.为培养和分离出酵母菌并淘汰杂菌,常在培养基中 加入( C ) A.较多的氮源物质 B.较多的碳源物质 C.青霉素类药物 D.高浓度食盐 点此播放教学视频
C
利用生物工程生产啤酒、味精、胰岛素、酸 奶的常用菌种分别是( ) A.酵母菌、枯草杆菌、大肠杆菌、乳酸菌 B.酵母菌、大肠杆菌、青霉菌、乳酸菌 C.酵母菌、谷氨酸棒状杆菌、大肠杆菌、乳 酸菌 D.黄色短杆菌、酵母菌、大肠杆菌、乳酸菌
点此播放教学视频
分离土壤中分解尿素的细菌,对培养基的要求是 ( ) ①加尿素 ②不加尿素 ③加琼脂 ④不加琼脂 ⑤加葡萄糖 ⑥不加葡萄糖 ⑦加硝酸盐 ⑧不 加硝酸盐 A.①③⑤⑦ B.②④⑥⑧ C.①③⑤⑧ D.①④⑥⑦
平板,作为重复组,才能增强实验的说服力与准确性。在分析实验结果时, 一定要考虑所设置的重复组的结果是否一致,结果不一致,意味着操作有 误,需要重新实验。
说明设置重复组的重要性。
思考书 本22页 第一位同学只涂布了一个平板,没有设置重复组,因此 问题:
结果不具有说服力。第二位同学考虑到设置重复组的问 题,涂布了3个平板,但是,其中1个平板的计数结果与
五.课外延伸
1.在以尿素为唯一氮源的培养基中加入 酚红指示剂。培养某种细菌后,如果PH 升高,指示剂将变红,说明该细菌能够 分解尿素。
脲酶
五.课外延伸
2.测定饮水中大肠杆菌数量的方法是将一定体积的水用细菌 过滤器过滤后,将滤膜放到 伊红-美蓝 培养基上培养,大肠 杆菌菌落呈现黑色,通过记算得出水样中大肠杆菌的数量。
注意事项
①为了保证结果准确,一般选择菌落数在30— —300的平板上进行计数。 ②为使结果接近真实值可将同一稀释度加到三 个或三个以上的平皿中,经涂布,培养计算出 菌落平均数。
③统计的菌落往往比活菌的实际数目低。
点此播放教学视频
直接计数法、 活菌平板计数法、
比浊法(原理是在一定范围内,菌的 计数法
培养不同微生物往往需要不同培养温度。 细菌:30~37℃培养1~2d 放线菌:25~28℃培养5~7d 霉菌:25~28℃的温度下培养3~4d。 在菌落计数时,每隔24h统计一次菌落数目。 选取菌落数目稳定时的记录作为结果,以防止 因培养时间不足而导致遗漏菌落的数目。
点此播教学视频
3、常见的分解尿素的微生物 芽孢杆菌、小球菌、假单胞杆菌、克氏 杆菌、棒状杆菌、梭状芽孢杆菌,某些 真菌和放线菌也能分解尿素。
3、课题目的
①从土壤中分离出能够分解尿素的细菌 ②统计每克土壤样品中究竟含有多少这样的细菌
一.研究思路
㈠.筛选菌株 ㈡.统计菌落数目 ㈢.设置对照
点此播放教学视频
是
生长多种 微生物
㈡.统计菌落数目:
1、显微镜直接计数: 利用血球计数板(血细胞计数板),在显微镜下计算一定 容积里样品中微生物的数量。
缺点:
不能区分死菌与活菌; 不适于对运动细菌的计数; 需要相对高的细菌浓度; 个体小的细菌在显微镜下难以观察;
2.间接计数法(活菌计数法) ⑴原理:在稀释度足够高时,微生物在固体培养基上
点此播放教学视频
二.实验的具体操作
㈠.土壤取样 ㈡.制备培养基: 制备以尿素为唯一氮源的选择培养基。
点此播放教学视频
[三]样品的稀释
◆应在火焰旁称取土壤10g。 ◆在稀释土壤溶液的过程中,每一步都要在火焰旁进行
◆分离不同的微生物采用不同的稀释度 原因:不同微生物在土壤中含量不同 目的:保证获得菌落数在30~300之间、适于 计数的平板 点此播放教学视频
1、土壤取样 2、制备培养基: 3、样品的稀释 4、取样涂布 5、微生物的培养与观察
点此播放教学视频
微生物的培养与观察
三.结果分析与评价
对照的培养皿在培养中无菌落 1 、结合对照,分析培养物中是否有杂菌污染 生长,说明培养基没有被杂菌 以及选择培养基是否筛选出一些菌落。 污染。 牛肉膏蛋白胨培养基的菌落数 2 、 是否获 得 了某 一 稀释 度 下 , 菌 落数 目在 目明显大于选择培养基,说明 30——300 的平板。在这稀释度下,是否至少 选择培养基具有选择作用。 有两个平板的菌落数相近? 3 、你统计的每克土壤中含有能分解尿素的细 菌的菌落数是多少?与其他同学的结果接近吗? 如果差异很大,可能是什么原因引起的?
悬液中细胞浓度与混浊度成正比,即与光 密度成正比,菌越多,光密度越大。因此 可以借助于分光光度计,在一定波长下, 测定菌悬液的光密度,以光密度表示菌 量。)
膜过滤法(当样品中菌数很低时,可
以将一定体积的湖水海水或饮用水等样品 通过膜过滤器。然后将滤膜干燥、染色, 并经处理使膜透明,再在显微镜下计算膜 上 ( 或一定面积中 ) 的细菌数 )