一、高、标清同播的解决方案对于高标清同播的播出系统来说,如何正确完成标清与高清信号的上下变换,并保持画面内容的完整和美观,是系统设计中需要着重考虑的关键问题。
全流程应用AFD技术,可以保证高标清变换中幅型变化的正确性。
常见的高标清上下变换有以下几种。
图1、高清下变换标清的主要形式图2、标清上变换高清的主要形式其中14:9在国内不常见,在欧美国家的电视节目中可能会遇到。
播出时面对两类不同的节目信号源:直通HD/SD-SDI信号和MXF-op1a文件。
无论对于哪种类型,一种思路是采用两版节目分别对应,即高清一版、标清一版。
另外一种是通过嵌入AFD信息,依托视频服务器、上下变换器等设备实现幅型变换自动适应。
根据SMPTE 2016系列标准,实现基于文件和基于信号嵌入AFD信息的技术已经成熟,也是未来的发展趋势。
AFD(Active Format Description)是活动图像格式描述的缩写。
它主要用来描述一个视频编码帧中,人们感兴趣的那部分活动图像的显示格式。
AFD 可以嵌入在MPEG视频流、基带SDI 信号的辅助数据区和MXF文件内的元数据区,实际播出中可以在HD/SD-SDI信号流和MXF文件中写入AFD信息,达到自适应选择宽高比变换方式的目的。
AFD在制作、转换的过程中不会丢失,可以被下一级设备识别。
在SMPTE 2016-1 至2016-5标准中,对于AFD的编码规范做了定义:2016-1: 定义AFD 和bar data 元数据格式,解释每个bit位信息2016-2: 定义平移-扫描(Pan & Scan)元数据格式2016-3: 定义AFD 和bar data 元数据在VANC中的位置2016-4: 定义平移-扫描(Pan & Scan)元数据在VANC中的位置2016-5: 将AFD、bar data 和平移-扫描(Pan & Scan)数据按KLV格式定义,写入MXF文件的规范。
注:KLV (Key-Length-Value) 是一种数据编码格式,常用于在视频数据流中嵌入所需信息。
AFD信息是用1个byte来标识的:b7,b6,b5,b4,b3,b2,b1,b0。
其中b2表示当前编码的帧是4:3(b2=0)还是16:9(b2=1)方式;b6~b3代表了我们设定的1001、1010、1111等AFD code。
每个编码帧对应一个AFD,它不但给出了本帧画面中人们感兴趣的那部分活动图像的幅型比,还标识了此活动图像处于本帧画面的什么位置,以及有无特殊的区域保护要求等信息;b7,b1,b0是保留位置,通常被置为0。
SMPTE 2016-1标准中描述了所有AFD编码的含义。
Bar Data可以作为AFD的辅助信息使用。
当活动图像不能填满整个编码帧,而且AFD本身不能完整描述其范围(如幅型比既不是4:3,也不是16:9或14:9)时,就需要用到Bar Data。
此时,Bar Data用来标识画面中未用区域的精确位置。
AFD 和Bar Data按照上述方法组成的附属数据包(ANC packets),可以放置在切换行后第二行与活动图像的最后行之间的任意行。
因此,对于625/50i系统,它们可以放置在9~23(322~336)行,对于1125/50i系统,它们可以放置在10~21(572~583)行。
当支持AFD信息的上/下变换器接收到带有AFD的视频信号时,它们能够自动解读出这些AFD信息所给出的活动画面的幅型比和位置信息,并根据这些信息来指导自己的上下变换方式。
例如当下变换器接收到AFD=1010的高清信号后,即可知道当前的视频信号为16:9图像,活动图像位于全屏幕。
根据这些信息,下变换器在做下变换时就会按照预先设置选择上下加黑边的变换方式。
同理,当下一条节目变为AFD=1111的高清信号时,下变换器就会根据AFD信息,按照预先设置自动选择两侧切边的变换方式。
值得注意的是,当上/下变换器完成变换后,它会根据变换后的图像格式赋予新的AFD值,所以输出信号的AFD值与输入信号的AFD值并不一致。
表1、AFD格式转换描述播出系统中AFD 解决方案•在文件备播过程中,根据节目单信息,AFD在迁移过程中嵌入MXF文件中。
•在总控矩阵接入AFD嵌入器,对需要加入AFD值的信号预设相应信息。
•播出下变换中,有AFD按AFD变换,没有按缺省方式default变换。
播出通道设计从方案设计上,我们做了三种选择,分别对应图3、4。
图3、高标清同播模式A、BA. 频道1、2按图3方案建设,标清通道配置了标清16X2切换开关,可以实现标清外来、彩条与测试图的播出。
该方案实现自动控制复杂,播控机要控制高清切换台、切换器、主备标清切换器、高清标清键控器等多个设备。
B. 频道3-6,缺少图3中的虚框内设备,实现高、标清同播,标清通道无法切入新的信号。
图4、高清播出模式CC. 频道7-10,按图4方式,只有高清链路输出。
二、备播的策略新播控平台的建设,定位在全台网的架构下,着眼于黑龙江台全台网系统的发展,从全局角度出发,使得播控平台既能满足目前节目播出业务需要,也能适配全台网架构下的互联模式。
系统设计重点是文件备播系统,承担着节目文件的缓存及安全备播任务。
该系统包括接口缓存部分和备播存储部分,接口缓存部分是系统对外的门户,用于接收外部系统的备播提交;备播存储区主要用于文件备播过程中的存储,用于向播出服务器推送文件。
在黑龙江台的设计中,采用了两台EMC Celerra NS480统一存储作为备播存储,Celerra NS-480为多协议环境提供了高级故障切换和完全自动化的存储分层功能,支持NAS、CIFS、iSCSI、SAN等多种协议,使用了经验证的后端EMC CLARiiON CX4 阵列技术。
这里对Celerra NS-480不做过多的介绍。
图5、备播存储架构二级存储体(即备播存储,相对于播出服务器的存储称为一级存储)设计为主、备方式。
文件传输时,播出系统的主存储通过EMB总线读取一次节目文件,两个存储体之间由镜像服务器做校验,镜像到备存储体。
只有校验一致的节目文件才能够显示迁移成功,充分保障节目文件的传输安全。
接口缓存区是外部系统节目文件传输至播出系统的过渡区域,所有进入播出系统的节目文件在接口缓存区域等待进行符合性及质量性审核,不符合规格的文件直接删除。
备播缓存区是只有符合迁移策略,且通过MD5校验、技审及人工复审的节目文件才能够进入备播缓存区,因此备播缓存区定位为合格的待播节目存储区。
对于文件读取,我们采用冗余读取、负载均衡方式,即根据负载情况,将读取按照客户端分布由应用策略负载均衡读取,带宽分担方式;备播存储区与接口缓存区是业务逻辑的区别,并不是物理存储的划分,依靠数据库和元数据的标志进行逻辑分区。
图6、存储访问策略备播业务流程设计1. 制作网与备播流程设计图7、节目制作网备播流程图流程说明:o制作系统准备好一个备播节目后,会调用播出系统的“节目备播就绪通知”服务;o通过ESB将申请发给播出GMP(全域备播策略),告知播出系统一个节目已经备播就绪;o GMP收到申请后,先对视频服务器、二级存储、媒资内对该素材进行查重;o如果没有该素材,则回复制作系统可以上传该节目;o GMP通知EMB将素材迁移至播出二级存储体;o技审服务器对进入播出备播库的文件进行文件技审和人工复检o技审和复检通过的素材将被播出同步服务器将素材按照播出备播主存储迁移到主视频服务器、播出备播备存储迁移到备视频服务器的原则进行迁移,至此完成整个备播流程。
o该流程全程支持监控;2. 媒资系统备播流程设计图8、媒资系统备播流程流程说明:o各频道向播出发送节目单,播出接收到节目单后,将节目单保存到播出数据库中,同时,通知GMP服务器。
o GMP服务器到播出数据库中检索节目单,对节目单进行分析和拆解,对播出系统系统内没有的素材生成迁移任务。
o GMP服务器向媒资备播库发出节目单备播请求,媒资备播准备好素材后,通知GMP服务器。
o GMP接收到备播回复通知后,调用FTP client通过主干EMB向媒资备播的FTP Server下载素材,下载素材后,对素材进行MD5校验。
o技审服务器对进入播出备播库的文件进行文件技审和人工复检o技审和复检通过的素材将被播出同步服务器将素材按照播出备播主存储迁移到主视频服务器、播出备播备存储迁移到备视频服务器的原则进行迁移,至此完成整个备播流程。
GMP备播系统是文件备播的主要途径,播出文件经过质量审核等环节后,最终被统一传送至播出服务器。
3. 广告备播流程设计广告串编系统与播出互联,采用直接连接方式。
不经过ESB+EMB总线,这样做的好处是减少了中间路由,对业务调试、维护都精简。
广告系统主要提供各频道的播出广告节目单和广告素材两部分,下面对这两方面业务流程进行详细介绍。
广告节目单播出串联单由各频道制作的播出节目单和广告部的广告播出单组成,各频道通过编单软件编辑每天的播出节目单,预留广告段落。
各频道广告播出单由广告部提供,编辑完成的广告单提交到备播。
频道节目单和广告播出单在备播合并成播出串联单,经审核后,提供给播出播控机。
图9、播出串联单流程示意图广告素材广告素材的传送与媒资、制作网不同的是,广告素材按段传送,每一段落包中包含若干个子素材。
因为广告素材的特殊性,在播出部二级存储为广告素材设一个共享区,广告系统可以将待播出广告素材上传到共享区,播出备播系统根据广告串联单到共享区获取广告素材,并迁移到播出视频服务器进行备播。
图10、广告段落包示意图备播传输中,如果广告条目n已经在备播中存在,则这一条广告不再传输,只传输备播中不存在的、新增广告条目。
这样的策略可以大大减少每天的传输量。
三、网络互联设计播出系统的网络连接也是设计的核心重点,要确保带宽充裕、性能稳定,避免单故障点,本次设计中我们对播出的核心交换机,采用两台H3C 7506E交换机,通过IRF2技术实现虚拟化集群,并内置防火墙板卡,实现统一管理。
对于基础网络来说,虚拟化技术同服务器虚拟化一样,也有相同的体现:在一套物理网络上采用VPN或VRF技术划分出多个相互隔离的逻辑网络,是1:N的虚拟化;将多个物理网络设备整合成一台逻辑设备,简化网络架构,是N:1虚拟化。
H3C 虚拟化技术IRF2属于N:1整合型虚拟化技术范畴。
IRF2(Intelligent Resilient Framework)是H3C推出的第二代智能弹性架构,具有以下优势:1. 让网络更简单:网络简化需要解决网络结构的简化,网络业务的简化,以及管理维护的简化这三方面的问题。
通过在从核心到接入的整网部署IRF2技术,多台物理设备虚拟成一台统一的逻辑设备,不但网络结构简单清晰,原先需要每台设备逐一配置,现在只需配置一次即可,大大简化了设备的管理维护。