精心整理地球物理勘探一、物探及其分类 二、物探方法简介 三、物探方法的特点:四、物探方法的应用范围与应用条件 1各种物理场。
可分为天然地球物理场和人工激发地球物理场两大类。
天然场;天然存在和形成的地球物理场主要有地球的重力场、地磁场、电磁场、大地电流场、大地热流场、核物理场(放射性射线场)等人工场:由人工激振产生弹性波在地下传播的弹性波场、向地下供电在地下产生的局部电场、向地下发射电磁波激发出的电磁等,发球人工激发的地球物理场。
人工场源的优点是场源参数书籍、便于控制、分辨率高、探测效果好,但成本较大。
地球物理场还可分为正常场和异常场。
正常场:是指场的强度、方向等量符合全球或区域范围总体趋势、正常水平的场的分布。
异常场:是由探测对象所引起的局部地球物理场,往往叠加于正常场之上,以正常二、物探方法简介1、重力勘探重力勘探是研究地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。
重力异常是由密度不均匀引起的重力场的变化,并叠加在地球的正常重力场上。
2、磁法勘探磁法勘探是研究由地下岩层与其相邻层之间、各类地质体与围岩之间的磁性差异而引起的地磁场强度的变化(即“磁异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。
磁异常是由磁性矿石或岩石在地磁场作用下产生的磁性叠加在正常3等。
4、地震勘探地震勘探是一种使用人工方法激发地震波,观测其在岩体内的传播情况,以研究、探测岩体地质结构和分布的物探方法。
确定分界面的埋藏深度、岩石的组成成分和物理力学性质。
根据所利用弹性波的类型不同,地震勘探的工作方法可分为:反射波法、折射波法、透射波法和瑞雷波法。
5、放射性勘探地壳内的天然放射元素蜕变时会放射出α、β、γ射线,这些射线穿过介质便会产生游离、荧光等特殊的物理现象。
放射性勘探,就是借助研究这些现象来寻找放射性元素矿床和解决有关地质问题、环境问题的一种物探方法。
61234物探解释结果是根据物探仪器观测到的地球物理数据求解场源体的反演过程,反演具有多解性;同时物探理论是建立在一定的数学模型基础之上,具有确定的条件(物性,地质、地形等),但实际上难以完全满足,也影响了物探解释的精度。
为了获得更加准确的物探成果,应注意以下几点:1、选择适合的方法。
应根据探测目的层与相邻地层的物性特征、地质条件、地形条件等因素综合分析,有针对性的选择物探方法。
2、尽可能采用多种物探方法配合,相互对比、相互补充、相互验证、去伪存真。
3、物探剖面尽可能通过钻孔、探井等已知点,对物探解释提供参数和验证。
4、注重与地质调查和地质理论相结合,进行综合分析判断。
四、物探方法的应用范围与应用条件1(1(2(3(4检测、桩基检测、地下管线探测等。
主要方法:电法(电阻率、探地雷达),地震波及声波测试(测井)、放射性测试2、应用条件(1)探测目的层与相邻地层或目的体与围岩之间的具有明显的物性差异;(2)探测目的层或目的体相对于埋深具有一定的规模;(3)探测目的层与相邻地层的岩性、物性及产状较为稳定;(4)满足各方法的地形条件要求;(5)不能有较强的干扰源存在。
3、常用工程物探方法的应用范围与应用条件·应用范围1)电测深法主要用于解决与深度有关的地质问题,包括分层探测如基岩面、地层层面、地下水位、风化层面等的埋藏深度以及电性异常体探测如构造破碎带、喀斯特、洞穴等。
2)电剖面法主要用于探测地层、岩性在水平方向的电性变化,解决与平面位置有关的地质问题,如断层、破碎带、岩层接触界面、喀斯特洞穴位置等。
3)高密度电法具有电测深和电剖面的双重特点,探测密度高、信息量大、工作效率高。
·应用条件1)被探测目的层的分布相对而言于装置长度和埋深近水平无限,被探测目的相234567)电剖面法探测的地质界面或构造线与地面交角应大于30°。
(2)音频大地电磁测深入法(AMT)音频大地电磁法(AMT)的频率范围约为0.1~10kHz,甚至100kHz,勘探深度为几米至几公里,在矿产勘查和工程勘探中应用广泛。
·应用范围1)探测第四纪覆盖层厚度。
2)探测地层分层。
3)探测隐伏岩溶及构造(断层、裂隙层、破碎带)。
4)探测塌滑体厚度。
5)探测地下水,确定含水层厚度。
123456(1123)受地形影响小。
(2)主要局限性。
1)抗电磁干扰能力差。
2)虽然探测深度较深,但深部是低频信号的反映,因此在加大探测深度的同时,也降低了异常分辨率,在使用该方法进行深部探测时,应充分考虑到深度与分辨率的关系。
3)对于硬质出露地区,裸露岩石致密坚硬,会大大限制电偶极子场源送入地下的电流强度,并导致测量电极接地电阻过高,干扰信号过强,有效信号太弱等不利影响,因此在硬件质基岩裸露地区不宜使用此类方法。
(3)浅层折射波法12345671)适用于层状和似层状介质的探测。
2)被追踪地层的速度应大于上覆各层的速度,且各层之间存在明显的波速差异。
3)被追踪地层应具有一定的厚度,中间层厚度宜大于其上覆层厚度。
4)沿测线被追踪地层的视倾角与折射波临近角之和应小于90°。
5)被追踪地层界面起伏不大,折射波沿界面滑行时无穿透现象。
6)被探测的目的体(断层、洞穴等)与周边介质之间存在明显的波速差异,并具有一定的规模。
·优点和局限性(1)折射波法的优点。
1)初至折射波比较容易识别。
23)4(21234于40m(4反射波法主要用于探测覆盖层厚度和进行地层分层,确定几十米内的较小的地质构造以及寻找局部地质体等。
·应用范围浅层反射波法适用于层状和似层状介质勘探,,不受地层速度逆转限制,可以探测高速地层下部的地质情况。
其应用范围与折射波法相近,主要有:1)探测第四纪覆盖层厚度及其分层或探测基岩面的埋藏深度及其起伏形态。
2)划分沉积地层层次。
3)探测风化带厚度(全风化、强风化)。
4)探测有明显断距的隐伏断层构造。
5)探测滑坡体厚度。
67812345(11)不受地层速度逆转限制,可探测高速地层下部的地质情况。
在软基勘探中横波反射法有较强的分层能力。
2)水平叠加时间部面图、等偏移时间部面图、地震映象波形图、地震深度剖面图能较直观反映地层的起伏形态和地层的尖灭点及断层的位置、断距。
3)所需震源能量较小,在勘探深度小于四五十米时,一般可使用锤击震源(与垂直叠加信号增强配合使用)从而免除使用爆炸震源时购买、运输、保管、使用雷管炸药的诸多麻烦,确保生产安全,并可在居民区、农田、果园等不允许进行爆破作业的测区开展反射波法勘探。
4)所需勘探场地较小,可在较狭窄的河谷、山谷开展工作。
(2)反射波法的局限性(缺点)123。
(51软弱夹层、探查基岩埋深和基岩界面起伏形态,探测滑坡体的滑动带和滑动面起伏形态,岩体风化分带,探测构造破碎带。
2)岩土的物理力学参数原位测试:饱和砂土层的液化差别。
3)地下隐埋体探测,包括地下空洞、古墓遗址、非金属地下管道、矿区废弃矿井和采空区以及各种地下掩埋物的空间位置的探测。
·应用条件1)探测场地地表不宜起伏太大,并避开沟、坎等复杂地形的影响,相邻检波器之间的高差应控制在1/2道距长度范围之内,且被探测地层应是层状和似层状介质。
2)被探测地层与其相邻层之间应存在大于10%的瑞雷波速度差异。
3)被探测异常体(透镜体、洞穴、岩溶、垃圾坑等)在水平方向的分布范围应不小45(112345比,以及介质的其他动参数。
(2)瑞雷波法的局限性(缺点)。
1)因瑞雷波勘探是对整个瑞雷波排列长度范围内地层的综合反映,对于地表或地层界面起伏较大或水平方向地层变化较大容易加大单点瑞雷波探测误差,这种情况下需要减小点距、加大连续剖面探测工作量。
2)在进行瑞雷波速度反演计算时,需借助测区钻孔资料或孔内波速检层(横波速度)资料才能进行定量分析。
五、物探在工程勘探中的应用1、覆盖层探测·探测内容(1)(2)(3)(11)根据覆盖层厚度选择物探方法。
覆盖层厚度较薄时(小于50m),一般可选择地震勘探(折射波法、瑞雷波法)、电法勘探(电测深法、高密度电法)和探地雷达等物探方法;覆盖层厚度时(50~100m),一般可选择电测深法、地震反射波法、电磁测深等方法;当覆盖层厚度深厚时(一般大于100m),一般可选择地震反射法、电磁测深等物探方法。
2)根据测区地形条件选择物探方法。
当场地相对平坦、开阔、无明显障碍物时,一般可选择地震勘探(折射波法、反射波法、瑞雷波法)、电法勘探(电测深法、高密度电法)等物探方法;当场地相对狭窄或测区内有居民区、农田、果林、建筑物等障碍物时,一般可选择以点测为主的电测深法、瑞雷波法和电磁测深等物探方法。
3)在水域进行覆盖层厚度探测时,可根据工作条件选择物探方法。
在河谷地形、河4(21存在较明显的电磁差异、且探测深度较浅时,可选择探地雷达法。
2)根据覆盖层介质饱水程度选择物探方法。
地下水位往往会构成良好的波速、波阻抗议和电性界面,当需要对覆盖层饱水介质与不饱水介质分层或探测地下水位时,一般可选择地震折射波法、地震反射波法和电测深法,但地震折射波法不对地下水位以下的覆盖层介质进行分层;瑞雷波法基本不受覆盖层介质饱水程度的影响,当把地下水位视察为覆盖层介质分层的影响因素时,可采用瑞雷波法。
3)利用钻孔进行覆盖层分层。
一般选择综合测井、地震波CT、速度检层等。
4)探测覆盖层中软夹层和砂夹层时,在有条件的情况下可借助钻孔进行跨孔测试或速度检层测试;在无钻孔条件下,对分布范围较大、且有一定厚度的软夹层和砂夹层,可采用瑞雷波法。
(3123料。
2(1)(2)破碎带宽度。
(3)断层物性参数(电阻率、波速、密度、孔隙度)测试。
·探测方法选择探测陷伏构造的物探方法较多,应根据探测任务(内容)层的埋深、规模、覆盖层性质、断岩与围岩物性差异、地形条件、干扰因素等选择一种或两种地质效果比较确切的物探方法。
以一种方法为主,另一种方法为辅。
解决唯一地质问题一般不必同时并列使用几种方法。
(1)隐伏构造(断层破碎带)位置、规模和延伸情况探测。
可选用折射波法、反射波法、电剖面法、高密度电法、电测深、瞬变电磁法、大地电磁测深和孔间CT、瑞雷波法、放射性测量等。
其中:123456)(2)12层的波速。
3)测试断层的密度可采用γ-γ测井。
4)测试断层的孔隙度可采用声速井和γ-γ测井。
·工作布置(1)测线方向宜垂直断层的走向,或者根据勘探的需要与地质勘探线一致。
(2)在山区布置测线时,宜沿地形等高线或顺山坡布置;河谷区测线宜顺河流方向或垂直河流方向布置。
测线应避开干扰源。
(3)在断层走向不明的测区,试验阶段且布置十字形测线。
3、岩溶探测·探测内容12123探测地下喀斯特及规模较大的地表喀斯特。