当前位置:文档之家› 火山岩相构造学

火山岩相构造学

火山岩相构造学一、定义与分类火山岩相是在一定的环境下火山活动产物特征的总称。

“环境”一词在火山学中包含的内容更为广泛,复杂,它既有火山喷发环境,也有火山产物堆积的环境。

首先是陆上与水下环境。

其次是地表、近地表到地下一定深度的环境,再次是在火山或火山机构的特定位置,如近源的火口,火山颈和远源的环境。

各种环境直接决定火山活动产物特征的差异。

而火山岩相构造学总任务之一,就是从火山产物特征入手恢复它的喷发或堆积的环境。

通过岩相或相模式的研究可以正确判别火山喷发类型、火山构造、划分火山旋回和再造古火山活动史;在研究火山成因矿床时岩相的研究是必不可少的。

据中国东部中生代陆相火山岩地区工作的实践,提出以下相分类的基本方案。

(1)喷溢相effusion facies(EFF) 1(2)降落(空落)相fall out (air fall)facies (FOF)(3)火山碎屑流相Pyrodastic flow facies(PLF)(4)溢流相Surge facies{地面涌流(干涌流)ground surges(GSF),基底涌流(湿涌流)base surges(BSF)}(5)火山泥流相lahar facies (LHF)(6)火山爆发崩塌相V olcanic explosion-collapse facies(VECF)(7)侵出相extrusion facies(ETF)(8)火口。

火山颈相volcanic neck facies(VNF)(9)次火山岩相subvolcanic rock(intrusion)facies(SIF)(10)隐爆发角砾岩相subexplosive breccia facies (SBF)(11)火山喷发沉积相eruption—sedimentary facies (ESF)(一)、喷溢相1、底面、分界面在火山岩区野外地质调查中,为了建立地层层序,划分岩流单元、测定厚度,确定产状,就必须鉴别熔岩层的界面及顶底面。

(1)熔岩层界面下列一些标志可参考使用:①熔岩表面浮岩壳首先冷却形成裂缝。

熔融的岩浆自下而上涌出充填这种浮岩壳的裂缝。

这时,第二次的熔岩盖于早期熔岩流凸凹不平的浮岩壳之上。

②熔岩表面的楔形裂隙为第二次熔岩所充填。

③第二次熔岩溢盖于第一次枕状构造熔岩的顶部,两者之间为枕状体所隔。

④第二次岩流底部有第一次岩流的角砾。

⑤第二次熔岩叠盖在第一次熔岩发育有裂隙的顶部带之上。

⑥第一次熔岩经过风化剥蚀,沟谷内有充填物,往往为碎屑物,呈倒贯沉积脉,第二次熔岩溢盖其上。

⑦第二次熔岩对第一次熔岩顶部的烘烤,使第一次熔岩出现退色带。

⑧两种熔岩层界面其上、下气孔带的差异,第二次熔岩底面具扁平气孔带,与第一次熔岩顶部的多气化带相邻接。

⑨两期熔岩之间断续出现凝灰岩夹层。

⑩两期熔岩的间隙时间较长者,也可以有土壤层相隔。

如熔岩成分或结构有明显不同时,这种直接的界面易于鉴别,它们可以呈现整合或喷发不整合关系。

(2)熔岩层顶面下列一些现象指示熔岩顶面:玻璃质渣壳、集块岩壳;含同成分胶结的角砾熔岩;绳状,波状、旋涡状结构往往发育于顶部;多孔状、气孔小而密,充填物多;碎屑岩倒贯脉;红色氧化顶(对陆相而言);楔型裂隙,凹坑;枕状体发育,面包形、饼形、球形的、枕状体的凸面指示岩层顶面。

(3)熔岩层的底面下列一些特征可作为判别标志:含有下伏地层岩石的角砾;底面往往受到下伏岩层原始地形的影响而起伏不平;管状、串珠状、扁平状气孔或气孔带发育;下部捕虏深成包体较多;底部流纹比较发育;枕状体的平面或凹面指示岩层底面;底部暗色矿物相对上部更富集;柱状节理比较规则。

2、喷溢相模式熔岩流的内部,由于结晶冷却条件的差异,往往形成分带性,可区分为顶部(或上部带)、中间带和底部(或下部带)。

(1)酸性熔岩的内部分带酸性熔岩从底部到上部一个完整的分带可包括:珍珠岩质碎屑熔岩带,即珍珠岩的碎屑被次生玻璃质熔岩胶结;珍珠岩带;珍珠岩(或黑曜岩)与霏细流纹岩组成条带,每个条带厚数毫米到数米;流纹岩带,往往为斑状流纹岩;珍珠岩与霏细岩组成的条带、珍珠岩带、顶部带为多孔玻璃质熔岩,甚至出现浮岩。

酸性岩流内部分带。

各地区都有差异,但存在一般的规律(表11)。

在观察酸性熔岩层时,除注意表11所列六个方面之外,岩石颜色也应注意,酸性熔岩内部分带性与各种非金属矿产的分布、产出部位密切有关。

酸性岩流内部分带性是多样的,这主要取决于各种因素,诸如挥发分的饱和程度,熔岩冷凝和运移速度,浅岩浆房中液态不混熔,以及熔岩流的厚度。

最明显的分带性出现在厚的熔岩流中。

冷凝过程中挥发分聚集在岩流的顶部,易形成泡沫浮石状熔岩。

当熔岩沿地表流动易成皱纹状流状体,而中部则有利于形成原生球粒的过渡现象。

相反,在厚度不大的岩流中,流状体常发育于上部,而块状的玻璃变种(黑曜岩带)则常常发育在熔岩流的下部;中部发育结晶的球粒和微嵌晶生成物。

由于熔岩与地表接触使之速冷,底部发育有玻璃质岩,而表层中,熔岩物质破裂和皱纹现象叠置共存。

古老的酸性熔岩流内部的分带性由于侵蚀及重结晶作用,而不易保存完整或显示不明显。

因此,在研究酸性熔岩的内部分带性时,应注意脱玻与重结晶作用。

(2)基性、中性熔岩的分带性基性熔岩的分带性,一般比较明显,其分带性具表12所列的特征。

(二)火山碎屑流相火山碎屑流是火山爆发产生的热、气体和碎屑组成的密度流(density current)。

其堆积物为极其重要的一种爆发相,一直受到人们的重视。

“ignimbrite”的由来上面已讲述,是马歇尔(1935)提出的,国内文献译为“熔结凝岩”,将火山碎屑流与熔结凝灰岩视为同义词。

这种译法与近代国外文献中所述的含义不相符合。

如史帕克斯(1997)将ignimbrite定义为富含浮石的火山碎屑流堆积。

包括了熔结的和未熔结的,费希尔认为这类岩石有许多类型的过渡,建议将ignimbrite一词用于由火山碎屑流侵位而成的堆积物。

1985年赞希尔在南京讲学中提出。

许多地质学家认为ignimbrite包括了熔结的与未熔结的,而且还不受“凝灰”这一粒度的限制。

熔结凝灰岩(welded tuff)应该是指ignimbrite的熔结部分。

火山灰流(ash flow)或火山灰流凝灰岩(ash flow tuff )指粒度一般在“凝灰级”范围的火山碎屑流。

火山碎屑流形成于不同的构造和火山部位,体积差别很大。

火山碎屑流堆积物体积在0.001~1.0km3范围内,往往是典型的中心式火山喷发。

较大规模的火山碎屑流体积为1—l00km3,形成较大型的层火山,象1883年爪哇岛克拉克托火山体积为100~1000km3的火山碎屑流是与大型的破火山口相伴生,像加利福尼亚纵谷、黄石(怀俄明州)破火山口,它们是由连续的巨大体积的喷发而成。

有一种情况(科罗拉多州圣胡安山脉La Garita破火山口),单一的火山碎屑流岩席超过3000km3。

一般讲小到中等体积的火山碎屑流,其成分变化范围由流纹质到玄武质;而大体积的火山碎屑流通常为流纹质到英安质成分。

在对的地形关系方面,火山斜坡的上部,由于火山碎屑流迁移而仅仅保留于山谷的较低部位;在不平坦地区,小体积的火山碎屑流被限制在山沟内;火山碎屑流向外延展时,在火山斜坡之外,呈现如舌状的扇形。

在组分方面,火山碎屑流和相关的涌流堆积物均由晶屑、玻屑、浮岩和岩石碎屑组成,但其含量变化很大。

这主要取决于岩浆的组分和碎屑流的成因。

在某些堆积物中,有一定数量的晶屑和岩屑还可能有捕虏体,起源于熔岩穹爆发瓦解或崩落而成的碎屑流堆积物,则混合有无气泡、部分气泡和全部气泡的原生岩浆物质碎屑。

从定义上说,火山灰流凝灰岩是由50%以上属于火山灰粒级(<2mm)的碎屑物组成。

这些碎屑物中有不同数量的浮岩砾和岩石砾而构成混合物。

最普通火山灰粒缎的碎屑是玻璃,且往往伴有少量的浮岩粒。

火山灰和火山砾级的浮岩碎屑都含有直径几毫米或几微米的椭圆形或长管状气孔。

管状气孔的浮岩被认为是多泡沫的岩浆迅速地从火山管道上升过程中形成的,因此其气泡延伸方向与它们的形态相一致。

晶屑为其次普通的火山灰粒级的组分,产于伴生的同源岩浆浮岩砾或岩块中的斑晶,大多数并不破碎,因此说明斑晶的破碎作用可能发生在喷发或搬运的过程中,甚至可以延续到压结过程中。

正象晶体稍为张裂而充填玻璃质碎屑,香肠状岩石板条和弯曲的黑云母等所表现的现象。

在火山碎屑流堆积物中晶体丰度约为0—50%,明显高于伴生的同成分溶岩中的斑晶含量。

一般情况卜,晶屑含量高于浮岩火山砾和火山弹,这是在搬运过程中,晶体相对于玻屑优先富集在胶结物中的有力证据。

因为多数大体积的火山碎屑流堆积是钙碱性英安岩和流纹岩,所以晶屑矿物大多数是石英、透长石,斜长石,其次为角闪石、辉石、黑云母、钛铁氧化物,副矿物为锆石,榍石。

在粗面质、响岩质和超碱性流纹质的岩石中,碱性长石取代了两种长石。

在一个冷却单元内,晶体丰度朝上部可能增加而且变成更为基性的成分。

岩屑在中等到大体积的火山碎屑流或在某些小体积浮岩碎屑流中是稀少的,一般含量小于5%(体积)岩屑的:主要来源有三种:来自岩浆房边缘缓慢冷却、结晶的岩浆“外壳”,来自火山管道壁及火山碎屑流沿途捕获。

如果对区域地层是了解的,那么前两种来源的碎屑可以提供岩浆房深度的信息。

在结构构造方面,大多数未熔结的火山碎屑流堆积物缺乏分选而呈块状,但在许多情况下,也显示微小的粒序、线状层理或朝一定方向碎屑的叠瓦状构造。

多数的火山碎屑涌流堆积比火山碎屑流堆积的厚度薄、粒度更细和具较好的分选性,而波状或交错层理可能是常见的构造。

火山碎屑流堆积内部分层是通过递变的基底带、大型的碎屑排列链、交替的粗细粒序层、未经变动的伸长或板状碎屑的方向以及通过颜色和成分变化来划分:包括递变层理在内的许多特征提供了火山碎屑流是高密度层流状态侵位的证据。

在一个单一的火山碎屑流之内,粒度递变可能是正向的、反向的、对称的或复合的。

浮岩碎块、浆屑的粒序可能是反向的,而岩石碎块的粒序则可能是正向的,这是由于两者密度有很大的差别。

由于在流动过程中的分选作用,晶屑与岩屑相对地集中在火山碎屑流的底层。

绝大多数火山碎屑流堆积的分选系数大于2,随着搬运距离的增大分选系数趋于减小。

火山碎屑流和涌流堆积物比空落堆积更缺乏分选性,当然它们之间也有明显的重叠区。

在火山碎屑岩流堆积的结构分析中,了解浆屑、浮岩、岩屑和晶屑的相对比例是极为重要的。

因为它们的粒度分布、分选和其他参数在喷发柱和在流体中可以作为不同于分选的其它含义,例如岩屑可有岩浆侵入引起的岩浆房,火山口壁的碎裂,或者火山口内岩塞、岩穹的破碎而成,也可以是在其流动过程中摄取而来的基底。

晶屑的粒度分布是岩浆中斑晶的粒度和爆发过程中的破碎的效应,但是不同的矿物具有不同的粒度范围(如长石对比磁铁矿)。

相关主题