(二 〇 一 零 年 零 六 月纺织复合材料论文 题 目:纺织复合材料技术的发展和应用 姓 名: 学 院:轻工与纺织学院 班 级:纺织工程08-2班 学 号:摘要纺织复合材料涉及日常生活方方面面,研究其发展和应用有极其重要的社会价值和现实意义。
本文是纺织复合材料从十九世纪开始发展历经二百余年的发展过程的缩影包括19世纪的纤维素化学和碳纤维20世纪的煤炭化学、玻璃纤维和复合材料、合成纤维和复合材料、太空时代的先进复合材料;纺织复合材料的应用领域包括、航天航空领域飞行器的重量、降落伞、个体防护装备、弹射座椅、等其它航空装备中复合材料的应用,船舶工业,汽车工业,军事工业和其他行业。
关键词:纺织复合材料、发展、应用、玻璃纤维、航空、军事、船舶AbstractTextile composite materials involved in every aspect of daily life, study their development and application of a very important social value and practical significance Textile composite materials involved in every aspect of daily life, study their development and application of a very important social value and practical significanceKeywords: textile composite、developing 、application glass fiber、aviation、car military、shipping目录引言 (4)第一章纺织复合材料的发展 (5)1.1 19世纪的纤维素化学和碳纤维 (5)1.2 20世纪的煤碳化学和复合材料 (5)1.2.1 玻璃纤维和复合材料 (6)1.2.2 合成纤维和复合材料 (6)1.2.3 太空时代和先进复合材料 (6)1.3 纤维和复合材料的现状 (7)第二章纺织复合材料的应用 (9)2.1 航天航空领域 (9)2.1.1 飞行器的重量 (10)2.1.2 降落伞 (11)2.1.3 个体防护装备 (12)2.1.4 弹射座椅 (12)2.1.5 其它航空装备 (12)2.2 船舶工业 (13)2.3汽车工业 (13)2.4 军事工业 (14)2.5 其他行业 (14)引言纺织复合材料的自十九世纪开始发展,现在它已涉及人类生活的方方面面,研究其发展历程和在发展过程中出现的问题以及取得的应用成果对我们促进社会发展、改善生活、保护环境有重要意义。
第一章纺织复合材料的发展1.1 19世纪的纤维素化学和碳纤维19世纪是纤维素化学很发达的时代。
以棉线或纸浆作为原料合成了硝酸纤维素(1846)、硫酸纤维素(1868)、醋酸纤维素(1869)、乙醯纤维素(1901),制成纤维、膜材、塑胶来使用。
另外还开发了将纤维素溶解在氧化酮氨水溶液中,制成再生纤维素纤维的铜氨法(1857),使之与二硫化碳反应后,溶解在稀硫酸中,制作再生纤维素纤维粘胶法(1892)。
粘胶法嫘萦是I.G.Farbenindustrie(德)的研究结果,开发了轮胎用高强度纤维(1936),作为替代耐隆和不锈钢线之素材而被广泛使用。
在同时代所诞生的碳纤维也是由硝酸纤维素和硫酸纤维素纤维所制成的。
19世纪在电气领域上,也是一个发展很迅速的时代,实用的电池是由J.F.Daniell(1836)等人发明,发电机是由 C.F.Varley、Werner以及William Siemens兄弟,照明器具的弧光灯是由F.Nollet(1826),W.E.Staite(1846),P. Jablochkoff(1871)等人进行研究改良的。
电阻线通电而发光的白炽灯灯泡是Staite(1847)所发明的,但因铂表合金线的寿命很短,故而未能成功。
使用碳线的构思是J.W.Starr(1845)最早取得美国专利,J.Swan(1848)也独自尝试碳线灯泡,但因真空泵的能力不足而未能成功,到了1878年,使用硝酸纤维素纤维制造的碳纤维才达成目的。
碳纤维制造技术在美国被保存下来,所以在美苏太空开发竞争的时代里,探求超高温耐热材料时,碳纤维织物的再度复活也是可以理解的。
1.2 20世纪的煤碳化学和复合材料苯酚福马林树脂自从A.Von Bayer(1872)的研究以来,有许多的专利,在进行硬化时,必须加热,一加热就会因缩合反应所生成的水而产生气泡,所以是不好处理的树脂。
L.H.Bakeland将树脂和纸、棉布、木粉混合在一起,然后利用“边施加压力边加热”制做成型品,取名Bakelite,并申请专利(1909)。
他在最初是尝试代替象牙和琥珀而进入装饰品界,Bakilite的强度、滑动性、耐热特性是获得肯定的,被应用在兴起期的电气、机械、汽车组件而普及。
在日本,1914年由今天的住友Bakelite 取得专利实施权而开始制造。
苯酚树脂到今天除了电气、机械组件之外,还被广泛地应用在餐具、家常用具上,如铸造用壳体铸模、树脂粘结砂轮、安全帽、碗、叠层餐盒等等,但由于和热可塑性树脂竞争,产量日渐减少。
利用苯酚树脂将木材薄板(Veneer)粘合而成的复合材料(强化木材,Plywood、Veneer)普及到家具和建材用途,也被作为替代飞机机翼、横梁、机身所使用的织物材料使用。
例如,Fokker DR 1的主翼Rib Leading Edge和机身(1918),小型旅客机Plywood Bullets的机体构造(1927),H.Hughes之巨大飞行艇The Spruce Goose之机体构造就是Plywood制造(1947)。
日本在第二次世界大战中,为补铝材的不足,在横梁、螺旋桨、补助燃料槽、浮筒组件上使用Plywood,在英国,De Havilland公司的Mosquito轰炸机有7781架,此外,为运送重装备而制造许多翼幅33m之大型滑翔机,已为实战配备。
但机体内部有污水滞留,木材就会腐蚀、漏水,老鼠会繁殖并咬电线等困扰。
1.2.1 玻璃纤维和复合材料玻璃纤维的历史可追溯到古代的腓尼基和埃及。
近代,英国的R.Hook在实验室制造(1665),岩仓具视欧美使节团于1872年12月6日到巴黎参观玻璃纤维织物,提到“用玻璃制做细线,然后织成锦缎,工艺奇妙,至此达到极致”,由此可以看出法国至少可以少量制造玻璃纤维了。
玻璃纤维织物广为人知是在1893年的芝加哥万国博览会(World's Columbian Exposition),由E.D.Libbys展出经纱使用玻璃纤维,纬纱使用蚕丝织成的布料所制做的服装,他为了招揽顾客,宣传自家公司的雕花玻璃而请有名的女星穿玻璃纤维制成的服装,但是发展的重点并不是玻璃纤维。
1.2.2 合成纤维和复合材料合成纤维在1930~1960年代和煤炭化学、石油化学的发展同步发展起来。
具代表性的纤维有聚氯乙烯纤维(1931)、聚醯胺纤维(1935)、聚酯纤维(1941)、亚克力纤维(1950)、聚氨基甲酸酯系弹性纤维(1959)、聚丙烯系纤维(1959)、芳香族聚醯胺纤维(1962)。
这些合成纤维在衣料方面置换了麻、棉、蚕丝、羊毛等天然纤维和嫘萦、彭帛、醋酸等纤维素系再生纤维。
在产业资材领域被广泛使用,和合成橡胶复合而成的轮胎、皮带、软管、胶布,和树脂复合而成的帐篷、防水帆布、挡油堤、地工织物、膜构造建筑等,和水泥、沥青复合而成的屋顶材、屋顶、混凝土补强等等,作为复合材料的强化纤维使用。
1.2.3 太空时代和先进复合材料火箭前端的前锥体,火箭发动机,在返回地球时街进大气圈的密封舱会达到高温,所以是使用耐热性卓越的石墨和钨,除此之外,还会采用苯酚树脂和石棉、耐热玻璃纤维、耐隆纤维织物等复合之材料。
石棉在1500℃左右会失去结晶水,引起强度的降低,耐热玻璃纤维是对玻璃纤维进行浸酸处理,将氧化铝以外的成分溶解去除而获得的纤维,因为强度低,所以探求其他的强化材。
在此种背景下,开发燃烧螺萦织物而成碳纤维织物,然后是碳纤维一苯酚树脂复合材料,进而是将此CFRP燃烧而得碳纤维强化炭复合材料(C/C)。
火箭发动机的喷管喉衬(Nozzle Throat)及射出长锥(Exit Cone)会达到2,500℃,所以碳纤维强化碳复合材料(C/C)在冲进大气圈时的前端部分会被加热到5,500℃,所以要使用碳纤维强化苯酚树脂制材料。
碳纤维织物在1957年左右,在美国出现Barnebey-Cheney,Atomic Laboratories,National Carbon的名称,而用于烧蚀材的碳纤维织物是由HITCO,3M,UCC/National Carbon,Carborundum,J.P.Stevens,H.I.Tompson Fiber Glass各大型企业所供应的。
原料是嫘萦织物,又有经过2,000℃热处理之碳化等级和2,800℃热处理石墨化等级的区分,但是拉伸强度、弹性率的要求并不是很严格。
初期的碳纤维织物是和制作碳电极一样,都是利用批次式加热炉对嫘萦织物进行热处理,然后再进行织物的连续燃烧。
太空机器的组件有圆筒和球形的,绕纱比将织物层叠较容易成型,UCC因此利用嫘萦长丝纱的连续燃烧而制造出碳纤维纱。
此种碳纤维所要求的是耐热性和经得起长丝卷绕工程处理的强度,并不是要求高强度、高弹性率。
1.3 纤维和复合材料的现状纤维的使用量世界纤维生产量为5,600万吨/年,若依品种别来说,合成纤维是46%、天然纤维45%、再生纤维4.4%、玻璃织维4.4%。
在5,600万吨中,被应用在FRP、轮胎、皮带、被覆布、屋顶材、石棉板、纤维强化水泥等复合材料上的纤维用量,因为统计值不完备,故而不清楚。
FRP所使用的补强纤维大约是250万吨,玻璃纤维占压倒性多数,有220万吨(89%)、天然纤维25万吨(10%)、碳纤维1.5万吨(0.6%)、芳香族聚醯胺纤维1万吨(0.4%)。
在250万吨中,用在印刷基板和胶合板的玻璃纤维、纸材、棉纤维并不包含在内,印刷基板的统计值是采面积表示,所以很难进行强化纤维的质量换算。
限于FRP,由JEC Compo-sites引用世界的用途别使用量以及销售额的比率,建设、汽车是两大用途,占使用量的55%,销售额则是占44%。
另外,基质树脂方面,以热硬化性树脂(聚酯树脂42%、环氧树脂13%、其他15%)占压倒性多数,有70%,热可塑性树脂(聚醯胺树脂13%、众丙烯系8%、其他9%)只有30%。
地球环境问题和复合材料随着世界人口的增加和生活水平的提高,天然资源的消费量增加了,废弃物也一定会增加,因此对地球环境造成影响。