当前位置:文档之家› 最新2第二章 神经的兴奋与传导 高三生物课件教案 人教版-药学医学精品资料

最新2第二章 神经的兴奋与传导 高三生物课件教案 人教版-药学医学精品资料


浓度 (×10-3 mol/l)
Na+
120
K+
5
Cl-
125
Na+
12
K+
125
Cl-
5
A-
108
1. Nernst方程:
膜内钾离子向膜外扩散到维持膜内外电化学动态平衡的水平 是形成静息电位的离子基础,所以静息电位主要决定于钾离 子的平衡电位。
•电化学平衡状态: ①K+从高浓度一侧向低浓度一 侧移动趋势;
最新2第二章 神经的兴奋与传 导 高三生物课件教案 人教版-
药学医学精品资料
2.1 兴奋性和兴奋
应激性(irritability):活的机体、组织与细胞对刺激发生反应的 能力、性能。动植物普遍所具有的。
兴奋性(excitability):可兴奋细胞受到刺激后产生兴奋的能力。 可兴奋细胞:指感受器细胞、神经组织、肌肉细胞和腺细胞。
②形成的电位差抵制这种趋势。
两者达到动态平衡。
半透膜
•K+平衡电位 其大小可用Nernst方程计算:
R-气体常数, T-绝对温度 F-法拉第常数
为形成平衡电位而移动的K+仅需占极少部分。(图)
2. Goldman方程
①如果细胞膜对某一种离子是不能通透的,则这种离子的电化 学梯度对膜电位不起作用。 ②通透性大的离子对膜电位的产生所起的作用大。只有微小通 透性的离子对膜电位的作用很小。 膜在安静时,PNa约为PK的1/100~1/50.
3、强度的变化率(图2-6)
2.4 兴奋性的指标与兴奋性的变化
一、兴奋性的衡量指标 –阈强度:与兴奋性成反比 –时值:两倍基强度的刺激引起兴奋所需的最短时间 –利用时:用基强度的刺激引起兴奋所需的最短时间
二、阈上刺激引起组织一次兴奋后,组织兴奋性的变化过程:(图2-7)
1. 绝对不应期(absolute refractory period):兴奋性为零 2. 相对不应期(relative refractory period) :引起兴奋的刺激强度
细胞内高K+浓度和静息状态时膜主要对K+通透,是 细胞产生和维持静息电位的主要原因。
2.9 动作电位的离子基础
一、实验检验Na+在动作电位中的作用
二、动作电位的产生机制(图2-42)
1、某种刺激使细胞膜产生较缓慢的去极化(从a → b)。
2、当膜电位达到阈电位,膜上的部分钠通道开放,允许 Na+顺着浓度梯度流进细胞。 3、 Na+流入细胞引起膜进一步去极化,从而引起新的钠通道 开放,进一步加快Na+内流,形成Hodgkin循环,产生膜的再 生性去极化。这个过程产生动作电位的上升相。(从b →d)
兴奋:可兴奋组织对刺激作出的反应。
细胞在受刺激时产生动作电位的能力———兴奋性 动作电位产生的过程或动作电位———兴奋
2.2 神经元的结构和分类
神经胶质细胞
运动神经元 结构
1、神经:许多神经纤维(轴突)包围在结缔组织中组成(图2-1)。
2、 神经元 (neuron )
胞体: 轴丘 树突(dendrite):接受神经冲动传向胞体
4、双相动作电位和单相动作电位(细胞外记录)
2.7 神经冲动的传导速度和传导特点
1、传导速度 1)测量 2)传导速度与神经纤维直径的关系 (图2-21)
哺乳动物神经干内有A、B、C三类纤维:
A类纤维:有髓鞘的躯体传入和传出纤维,直径1-22μm,传
导速度5-120 m/s
(图2-22 )
B类纤维:有髓鞘的内脏神经节前纤维,直径<3μm,传导速 度3-15 m/s
>阈强度 3. 超常期(supernormal period) :引起兴奋的刺激强度<阈强度 4. 低常期(subnormal period) :兴奋性又低于正常水平。(图)
组织一次兴奋后,兴奋性的变化,具有重要机能意义。
●阈下刺激的总和:时间总和;空间总和
2.5 生物电的发现
Galvani—意大利医生和生理学家。生物电的发现。 (图) Volta—意大利物理学家。金属接触电动势理论 、 Volta电池。 Matteuci—意大利生理学家。二次收缩实验
C类纤维:无髓鞘传入纤维和无髓鞘交感神经节后纤维,直 径0.3-1.3μm,传导速度0.6-2.3 m/s
2、神经冲动传导的特点:
1)生理完整性 2)双向传导 3)非衰减性 4)绝缘性 5)相对不疲劳性
2.8 静息电位的离子基础
表2-1 静息时神经细胞膜内外离子浓度
细胞外液
细胞内液
离子
浓度(×10-3 mol/l) 离子
突起 轴突(axon):神经纤维
三种神经元模式图 (图)
神经元的主要类型(图)
3、神经纤维:
①有髓纤维(my)、
(图2-2)
郎飞氏结 (Node of Renvier) (图)
许旺氏细胞(Schwan Cell)
②无髓纤维(unmyelinated fibers) 图2-4
二、动作电位(细胞内记录)
1、动作电位 (action potential):指可兴奋细胞在受到刺激 而发生兴奋时所产生的外负内正的扩布性电位变化。
一些术语
极化(polarization) 1.去极化(除极化) (depolarization)
去极相 2.反极化(reversal polarization) 3.复极化(repolarization) 复极相 4.超射(overshoot) 5.峰电位(spike potential) 6.后电位(after-potential):
负后电位,正后电位 7.超极化(hyperpolarizaton)
2、动作电位主要特点: (1)“全或无”性质:如果刺激未达到阈值,则不 引起动作电位,而动作电位一经引起,其幅度便具有
最大值。(图2-14) (2)非衰减性传导 3、动作电位的主要生理功能
(1)作为快速、长距离传导的电信号; (2)调控神经递质的释放、肌肉的收缩和腺体的分泌。
2.6 神经干的损伤电位和动作电位
一、损伤电位和静息电位
1、损伤电位(injury potential):存在于损伤部位与完整 部位之间的电位差。 (图2-11)
2、静息电位(resting potential):细胞未受刺激时,即细 胞处于“静息”状态下细胞膜两侧存在的电位差。
内负外正。即极化状态(polarization)。图2-20
相关主题