毕业设计(论文)
外文文献翻译
文献、资料中文题目:多路温度传感器
文献、资料英文题目:Distributed Temperature Sensor 文献、资料来源:
文献、资料发表(出版)日期:
院(部):
专业:
班级:
姓名:
学号:
指导教师:
翻译日期: 2017.02.14
毕业论文(设计)外文翻译
题目:基于单片机的多路温度采集系统设计
系部名称:专业班级:
学生姓名:学号:
指导教师:教师职称:
多路温度传感器
一温度传感器简介
1.1温度传感器的背景
在人类的生活环境中,温度扮演着极其重要的角色。
无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。
自 18 世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。
在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80 的工业部门都不得不考虑着温度的因素。
温度对于工业如此重要,由此推进了温度传感器的发展。
1.2温度传感器的发展
传感器主要大体经过了三个发展阶段:模拟集成温度传感器。
该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。
此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控温,不需要进行非线性校准,外围电路简单。
它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135 等;模拟集成温度控制器。
模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105 和 MAX6509。
某些增强型集成温度控制器(例如 TC652/653)中还包含了A/D 转换器以及固化好的程序,这与智能温度传感器有某些相似之处。
但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别;智能温度传感器。
能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。
它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。
智能温度传感器内部都包含温度传感器、A/D 转换器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。
温度传感器的发展趋势。
进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。
1.3单点与多点温度传感器
目前市场主要存在单点和多点两种温度测量仪表。
对于单点温测仪表,主要采用传统的模拟集成温度传感器,其中又以热电阻、热电偶等传感器的测量精度高,测量范围
大,而得到了普遍的应用。
此种产品测温范围大都在-200℃~800℃之间,分辨率12位,最小分辨温度在0.001~0.01 之间。
自带LED 显示模块,显示4位到16位不等。
有的仪表还具有存储功能,可存储几百到几千组数据。
该类仪表可很好的满足单个用户单点测量的需要。
多点温度测量仪表,相对与单点的测量精度有一定的差距,虽然实现了多路温度的测控,但价格昂贵。
针对目前市场的现状,本课题提出了一种可满足要求、可扩展的并且性价比高的单片机多路测温系统。
通过温度传感器 DS18B20采集,然后通过C51 单片机处理并在数码管上显示,可以采集室内或花房中四处不同位置的温度,用四个数码管来显示。
第一个数码管显示所采集的是哪一路,哪个通道;后三个数码管显示所采集通道的温度值,精确到0.1度。
二 系统的实现及相关技术
2.1.系统的实现
系统的实现采用多线连接,就是四个DS1820分别连接到单片机的四个IO 口,这种方案虽然占用单片机的四个IO 口,但在单片机IO 口不紧缺的情况下采用这种方案大大的简化了编程难度,缩短了设计周期,同时也能保证系统的稳定。
方案二的框图如“图1-1”所示
图1-1 DS1820多线连接方案
2.2.AT89C51单片机简介
AT89C51是一种带4K 字节FLASH 存储器(FPEROM —Flash Programmable and Erasable Read Only Memory )的低电压、高性能CMOS 8位微处理器,俗称单片机。
AT89C2051是一种带2K 字节闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的DS1820 DS1820 DS1820 DS1820 AT89C51
单片机
P1.0
P1.1
P1.2
P1.3
P3.4
显示单元 按键控制单元
MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图“图1-2”所示
图1-2 AT89C51引脚图
主要特性:
²与MCS-51 兼容
²4K字节可编程FLASH存储器
²寿命:1000写/擦循环
²数据保留时间:10年
²全静态工作:0Hz-24MHz
²三级程序存储器锁定
²128³8位内部RAM
²32可编程I/O线
²两个16位定时器/计数器
²5个中断源
²可编程串行通道
²低功耗的闲置和掉电模式
²片内振荡器和时钟电路
管脚说明:
VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P0口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止。