Abaqus梁的开裂模拟计算报告1.问题描述利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。
参考文献Brena et al.(2003)得到梁的基本数据:图1.1 Brena et al.(2003)中梁C尺寸几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁由文献Chen et al. 2011得材料特性:1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t=2.721MPa,泊松比ν=0.2,弹性模量E c=28020MPa;2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.22.建模过程1)Part打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;ModelingSpace:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。
点击Continue 进入Sketch二维绘图区。
由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。
使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提示区的Done,完成草图。
图2.1 beam 部件二维几何模型相同的方法建立混凝土垫块:图2.2 plate 部件二维几何模型所选用的点有(0,0),(40,0),(40,10),(0,10)受压区钢筋:在选择钢筋的base feature的时候选择wire,即线模型。
图2.3 compression bar 部件二维几何模型选取的点(0,0),(1575,0)受拉区钢筋:图2.4 tension bar 部件二维几何模型选取的点(0,0),(1575,0)箍筋:图2.5 stirrup 部件二维几何模型选取的点为(0,0),(0,330)另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。
2) PropertyModule 中选择property ,然后选择功能模块对不同的材料进行赋值,下面是各种材料输入时候的数据:① 混凝土本构关系:模型一:(该模型的尺寸单位为m )在弹出的对话框中命名为beam ,在Mechanical 选项中点击Elastic ,在Young ’s Modulus 中输入28020000000,Poisson ’s Ratio 为0.2;类似的方法找到Concrete Damaged Plasticity ,按混凝土结构设计规范对受压取点8个,受拉取点7个。
下面是计算过程:由规范中附录C 中C2 混凝土本构关系:C.2.3混凝土单轴受拉的应力-应变曲线公式:εσc t E d )1(-=,所用参数可以参考规范(混凝土结构设计规范GB50010-2010)C.2.4混凝土单轴受压的应力-应变曲线公式:εσc c E d )1(-=,所用参数可以参考规范以及塑性应变与总应变的关系:pl el εεε+=,其中E el σε=以及塑性应变与总应变的关系:cr el εεε+=,el ε与上式相同借助matlab 软件计算受压、拉时的本构关系方程,其中塑性应变分别取0、0.0005、0.001、0.002、0.003、0.004、0.005、0.008得对应应力为23171225.88、35072364.4、32320980.31、24236963.88、17763125.96、13340141.18、10334750.06、5892086.123;开裂应变分别取0、0.001、0.003、0.005、0.008、0.01、0.05得对应应力2721000、2648625.968、875761.085、511922.937、334706.391、50489.31、16333.482。
由于水平限制,算得的受拉损伤因子未能通过abaqus 的算前检测,这里没有输入。
模型二:(该模型单元尺寸为m )Elastic 中的设置与模型一相同,计算其本构关系的时候按照文献Finite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams ,G. M. Chen 中的公式: 单轴受压:2)/()/](2)/[(1p p p p εεεεσαεαεσ+-+=,所用参数可见于引用的文献; 受压的时候为了寻找输入塑性应变的起始点,令abaqus 中提供的应力--应变输入方式的名义值与真实值关系公式为0,有:2)/()/](2)/[(10)1()1ln(ρρρρεεεεσαεαεσεσεnom nom nom nom nom nom nom E +-+==+-+解之得:=nom σ22.76652048MPa ,=nom ε0.00081284,=pl ln ε0。
nom ε从点0.00081284开始以步长0.0002得到83个点。
在输入到abaqus 前使用公式)1()1()1ln(ln nom nom true nom nom nom pl E εσσεσεε+=+-+=进行转换,输入的具体值可见附录。
单轴受拉:)(31)(3122)1(])(1[c crt w w c cr t t t e c w w e w w c f cr t --+-+=σ,所用参数可见于引用文献; 由于hc 为裂缝带宽(上面提到的文献中也命名为平面四节点单元的特征裂缝长度),取e 2,其中e 为单元网格长度,这里取10mm ,即hc 为14mm 。
在清华江见鲸或者J.G . ROTS 撰写的文献中都能找到其他单元类型的hc 与e 的换算公式,这里提到的hc 也可称为Lcr ,这提供了把本文中的开裂位移转化为开裂应变的方法:cr cr t L w ε=对wt 进行离散是采用前密后疏的方法,一开始的10个点步长为0.00012,中间,28个点步长为0.0012,最后13个点步长为0.006,加上零点一共53个点。
把位移转换成应变以后,同样地,使用名义值--真实值的转换公式得到数据,具体数值可见于附录。
由于水平问题,算得的受拉损伤因子未能通过abaqus 的算前检测,这里没有输入。
模型三:该模型使用的尺寸单位为mm ,受压时的取值只需在模型二的取值基础上进行单位换算即可。
本构关系的输入方式为应力--位移的方法,在输入类型中选择Displacement单轴受拉:对wt 进行离散,取等步长0.0012,共51个点。
这里还进行了受拉损伤因子dt 的计算,按公式:]/)([c t c t t t E h w w d σ+=,具体数据可见附录。
② 钢筋本构关系:类似的,把钢筋的杨氏模量输入到Elastic 中,三个模型的受拉受压钢筋都是200GPa ,在Plastic 中按照名义值--真实值得方法,取得两个点:屈服强度440MPa ,塑性应变为0;屈服强度448.8MPa ,塑性应变为0.02。
箍筋的屈服强度取596MPa ,塑性应变为0。
③ 垫块的本构关系:这里垫块的本构可以按混凝土的本构输入,也可以按钢筋的输入,为了方便计算取钢筋的本构关系作为其材料属性。
建立完本构关系后需对混凝土等截面属性进行赋值,点击,弹出Create Section 对话框,将Category 设为solid ,Type 设为Homogeneous ,其余参数保持默认,点击Continue ,material 为beam ,thickness 为203mm ,垫块也是类似的输入方式;对于钢筋,Category 设为beam ,Type 设为truss ,如受拉钢筋,由文献得直径为16mm ,面积为200.96(mm 2),由于同一水平面上有两根,取值402;受压钢筋和箍筋分别按直径9.5mm 和7mm 计算。
然后再同一个环境栏中使用,提示区要求用户选择赋予截面的部件,分别对上述创建过的部件赋予材料属性,完成操作。
3) Assembly进入Assembly模块,如图2.6 装配完毕的模型所示进行装配。
图2.6 装配完毕的模型垫块的位置和钢筋的布置严格按照文献Finite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams,G. M. Chen进行。
为了后期布置网格时候的方便,使用对所有钢筋进行组合,然后对组合后的钢筋在模型树中的instance进行操作‘make independent’。
4)Step在环境栏的Module列表中进入Step模块。
点击如下图进行设置:图2.7 Step-1的Basic选项图2.8 Step-1的Incrementation选项图中,Minimum不需要设置很小,Maximum number of increments也不需要设置很大,当模型真的不收敛的时候这两项的影响比较小,Maximun的设置回影响到Job中计算时的总增量步数目。
5)Interaction图2.9 约束管理器图2.10 加载点coupling约束图2.11 钢筋与混凝土的embeded region约束图2.12 垫块与混凝土梁的tie约束按照上述图示的对象设置相关约束,完毕后结束该操作。
6)Load如下图所示,在环境栏的Module列表中选择Load模块,进行荷载与边界条件的定义。
①定义边界条件点击,弹出对话框create boundary condition,step选择initial,category选择mechanical,types for selected step选择symmetry/antisymmetry/encastre,点击continue,选择对称轴,边界类型选择XSYMM(锁定转角是因为对称的位置需要承受弯矩)。
对于垫块上的边界条件,step选择initial,category选择mechanical,types for selected step选择displacement/rotation,点击continue,然后选择左下角垫块下部的最左边角点(这里选择下部的边上一点就可以,具体的位置对模拟影响不大)上约束类型限制U2。
图2.13 梁的约束示意图②施加荷载这里采用的是位移加载法,设置见图2.14。
图2.14 位移和在的施加上图中,U2是施加在Y轴方向上的位移,负号指向向下,模型一为-0.02(单位为米)、模型二为-0.02(单位为米)、模型三为-3(单位为毫米)7)Mesh首先使用工具对钢筋单元默认的beam单元更改为truss单元。