三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e g g223222320()[]2d 4()()aq a ar r r a r a ππ--=++⎰22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
空间任一点的电场是这两种电荷所产生的电场的叠加。
在b r >区域中,由高斯定律0d Sqε=⎰E S g Ñ,可求得大、小圆柱中的正、负电荷在点P 产生题3.1 图题3. 3图()a的电场分别为 2200120022r b b r r πρρπεε==r E e 2200120022r a a r r πρρπεε'-''==-''r E e 点P 处总的电场为 2211220()2b a r r ρε''=+=-'r r E E E 在b r <且a r >'区域中,同理可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为220022r r r πρρπεε==r E e 22220022r a a r rπρρπεε'-''==-''r E e 点P 处总的电场为 202220()2a r ρε''=+=-'r E E E r 在a r <'的空腔区域中,大、小圆柱中的正、负电荷在点P 产生的电场分别为20030022r r r πρρπεε==r E e 20030022r r r πρρπεε''-''==-'r E e 点P 处总的电场为 003300()22ρρεε''=+=-=E E E r r c 3.4 半径为a 的球中充满密度()r ρ的体电荷,已知电位移分布为32542()()r r Ar r a D a Aa r a r ⎧+≤⎪=⎨+≥⎪⎩ 其中A 为常数,试求电荷密度()r ρ。
解:由ρ∇=D g ,有 221d ()()d r r r D r rρ=∇=D g 故在r a <区域 2322021d ()[()](54)d r r r Ar r Ar r rρεε=+=+ 在r a >区域 5420221d ()()[]0d a Aa r r r r rρε+== 3.5 一个半径为a 薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为Q 为的体电荷,球壳上又另充有电荷量Q 。
已知球内部的电场为4()r r a =E e ,设球内介质为真空。
计算:(1) 球内的电荷分布;(2)球壳外表面的电荷面密度。
解 (1) 由高斯定律的微分形式可求得球内的电荷体密度为题3. 3图()b=+20021d [()]d r E r r ρεε=∇==E g 432002441d [()]6d r r r r r a aεε=(2)球体内的总电量Q 为 3220040d 64d 4ar Q r r a a τρτεππε===⎰⎰球内电荷不仅在球壳内表面上感应电荷Q -,而且在球壳外表面上还要感应电荷Q ,所以球壳外表面上的总电荷为2Q ,故球壳外表面上的电荷面密度为 02224Qa σεπ== 3.6 两个无限长的同轴圆柱半径分别为r a =和r b =()b a >,圆柱表面分别带有密度为1σ和2σ的面电荷。
(1)计算各处的电位移0D ;(2)欲使r b >区域内00=D ,则1σ和2σ应具有什么关系?解 (1)由高斯定理0d Sq =⎰D S g Ñ,当r a <时,有 010=D当a r b <<时,有 02122rD a ππσ= ,则 102ra rσ=D e 当b r <<∞时,有 0312222rD a b ππσπσ=+ ,则 1203ra b rσσ+=D e (2)令 12030r a b rσσ+==D e ,则得到 12b a σσ=- 3.7 计算在电场强度x y y x =+E e e 的电场中把带电量为2C μ-的点电荷从点1(2,1,1)P -移到点2(8,2,1)P -时电场所做的功:(1)沿曲线22x y =;(2)沿连接该两点的直线。
解 (1)d d d d x y CCC W q q E x E y ===+=⎰⎰⎰F l E l gg 2221d d d(2)2d Cq y x x y q y y y y +=+=⎰⎰22616d 142810()q y y q J -==-⨯⎰(2)连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为2812x x y y --=-- 即 640x y -+= 故W =21d d d(64)(64)d Cq y x x y q y y y y +=-+-=⎰⎰261(124)d 142810()q y y q J --==-⨯⎰3.8 长度为L 的细导线带有均匀电荷,其电荷线密度为0l ρ。
(1)计算线电荷平分面上任意点的电位ϕ;(2)利用直接积分法计算线电荷平分面上任意点的电场E ,并用ϕ=-∇E 核对。
解 (1)建立如题3.8图所示坐标系。
根据电位的积分表达式,线电荷平分面上任意点P 的电位为2(,0)L L r ϕ-==⎰22ln(4L l L z ρπε-'+=L L -rρ题3.8图04l ρπε=02l ρπε(2)根据对称性,可得两个对称线电荷元z l 'd 0ρ在点P 的电场为d d r r rE θ'===E e e 022320d 2()l rr z r z ρπε''+e故长为L 的线电荷在点P 的电场为20223200d d 2()L l r r z r z ρπε'==='+⎰⎰E Ee 20002L l r r ρπε'=e re由ϕ=-∇E 求E ,有002l ρϕπε⎡⎢=-∇=-∇=⎢⎥⎣⎦E(00d ln 2ln 2d l rL r r ρπε⎡⎤--=⎢⎥⎣⎦e0012l r r ρπε⎧⎫⎪-=⎬⎪⎭e re 3.9 已知无限长均匀线电荷l ρ的电场02lr r ρπε=E e ,试用定义式()d Pr rr ϕ=⎰E l g求其电位函数。
其中P r 为电位参考点。
解000()d d ln ln 222PPPr r rl l l P r rrr r r r r rρρρϕπεπεπε====⎰⎰E l g 由于是无限长的线电荷,不能将P r 选为无穷远点。
3.10 一点电荷q +位于(,0,0)a -,另一点电荷2q -位于(,0,0)a ,求空间的零电位面。
解 两个点电荷q +和2q -在空间产生的电位1(,,)4x y z ϕπε=令(,,)0x y z ϕ=,则有0=即 2222224[()]()x a y z x a y z +++=-++故得 222254()()33x a y z a +++=由此可见,零电位面是一个以点5(,0,0)3a -为球心、43a 为半径的球面。
3.11 证明习题3.2的电位表达式为2013()()422a aZe r r r r r ϕπε=+- 解 位于球心的正电荷Ze 在原子外产生的电通量密度为 124rZerπ=D e 电子云在原子外产生的电通量密度则为 32224344a r r r Zer rρπππ==-D e e 所以原子外的电场为零。
故原子内电位为230011()d ()d 4aa r rar r Ze rr D r r r r ϕεπε==-=⎰⎰2013()422a a Ze r r r r πε+- 3.12 电场中有一半径为a 的圆柱体,已知柱内外的电位函数分别为2()0()()cos r r a a r A r r arϕϕφ=≤⎧⎪⎨=-≥⎪⎩(1)求圆柱内、外的电场强度;(2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。
解 (1)由ϕ=-∇E ,可得到 r a <时, 0ϕ=-∇=Er a >时, ϕ=-∇=E 22[()cos ][()cos ]r a a A r A r r r r rφφφφ∂∂----=∂∂e e2222(1)cos (1)sin r a a A A r rφφφ-++-e e(2)该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为0002cos r r a r a A σεεεφ=====-n E e E g g3.13 验证下列标量函数在它们各自的坐标系中满足20ϕ∇=(1)sin()sin()hzkx ly e- 其中222h k l =+;(2)[cos()sin()]nr n A n φφ+ 圆柱坐标;(3)cos()nr n φ- 圆柱坐标;(4)cos r φ 球坐标;(5)2cos rφ- 球坐标。