吴家沟165KW分布式光伏发电项目可行性研究报告淅川光伏发电二0一六年十月二十七日1 概述1.1 项目概况工程学院坐落于省市道义经济开发区。
学院校园规划用地86万平方米,现有占地面积60余万平方米,规划建筑面积35万平方米,现有建筑面积27万平方米,学院校园设计理念先进、结构布局时尚、功能设施完善,校园可铺设太阳能电池方阵的建筑楼顶总面积为58336平方米,计划可安装电池组件的规划容量为2.2MW,实际装机容量为2286.78kWp,太阳能研究应用负责电站的设计及施工安装。
本工程按照“就近并网、本地消耗、低损高效”的原则,以建筑结合的分布式并网光伏发电系统方式进行建设。
每个发电单元光伏组件通三相并网逆变器直接并入三相低压交流电网(AC380V,50Hz),通过交流配电线路给当地负荷供电,最后以10kV电压等级就近接入,实现并网。
由于分布式电源容量不超过上一级变压器供电区域最大负荷的25%,所有光伏发电自发自用。
以保障安全、优化结构、节能减排、促进和谐为重点,努力构建安全、绿色、和谐的现代电力工业体系。
1.2 编制依据国家、地方和行业的有关法律、法规、条例以及规程和规。
1.3 地理位置本项目位于省市道义经济开发区,东经123°、北纬41°,年日照数在2200-3000小时,年辐射总量达到5000-5850 MJ/㎡,太阳能资源较好,属于三类光伏发电区域。
由于交通运输等条件较好,并网接入条件优越,可以建设屋顶太阳能分布式光伏并网电站。
1.4 投资主体本项目由能源投资(集团)有限责任公司投资兴建。
能源投资(集团)有限责任公司(简称能源),是经省人民政府批准设立的大型国有独资公司,隶属于省国有资产监督管理委员会,是省政府授权的投资主体和国有资产经营主体,是经营省本级电力建设基金和管理省级电力资产的出资人。
目前拥有13家全资及控股子公司。
能源的投资领域主要是以电力能源为主。
“十一五”期间,能源逐步向节能环保和低碳经济领域拓展,着力发展风电、太阳能发电等业务。
“十二五”期间,公司将大力拓展在可再生能源和循环经济的投资。
2 工程建设的必要性2.1 国家可再生能源政策我国政府已将光伏产业发展作为能源领域的一个重要方面,并纳入了国家能源发展的基本政策之中。
已于2006年1月1日正式实施的《可再生能源法》明确规了政府和社会在光伏发电开发利用方面的责任和义务,确立了一系列制度和措施,鼓励光伏产业发展,支持光伏发电并网,优惠上网电价和全社会分摊费用,并在贷款、税收等诸多方面给光伏产业种种优惠。
2009年12月26日第十一届全国人民代表大会常务委员会第十二次会议通过了全国人民代表大会常务委员会关于修改《中华人民国可再生能源法》的决定。
修改后的可再生可能源法进一步强化了国家对可再生能源的政策支持,该决定将于2010 年4 月1 日起施行。
本项目采用光伏发电技术开发利用太阳能资源,符合能源产业政策发展方向。
《国家能源局关于申报分布式光伏发电规模化应用示区的通知》(国能新能[2012]298号)为契机,积极发展分布式光伏发电,形成整体规模优势和示推广效应。
依托太阳能资源丰富的优势,充分利用建筑物空间资源,发挥削峰填谷作用。
通过利用学校的建筑物屋顶,积极开发建设分布式光伏发电低压端并网自发自用项目。
2.2 地区能源结构、电力系统现状及发展规划省是我国重工业和原材料工业基地之一,在现代化建设中发挥着举足轻重的作用。
2003年省全社会用电量占东北电网的50.2%,而省电源装机容量占东北地区的39.5%;2004年用电负荷极不相称,一直处于缺电状态。
随着国家支持东北地区等老工业基地加快调整和改造政策的实施,省作为我国的老工业基地,一大批国有骨干企业生产规模不断扩大,社会经济全面复,全社会用电量和用电负荷在“十五”后两年将有一个跳跃式的发展。
因此“十五”后两年和“十五”期间,省经济将伴随工业的振兴,占全社会用电量比重较大的第二产业用电量将会有较大幅度的攀升,相应的会带动第一产业和第三产业用电量的全面回升,人民生活水平也会随着社会经济的发展将有较大的改善,用电量和用电负荷将大幅度增长。
2001年、2002年、2003年2004年全社会用电量分别比上年增长2.1%、5.84%、12.16%、12.32%,全省用电量呈现加速增长趋势。
2005年最大电力缺额2578MW,到2010年电力缺额为5711 MW。
为了改变这种用电紧的局面,除了正常受入省、省的盈余电力外,“十五”期间应适当考虑在本省加强电源点建设的工作。
因此,建设光伏发电站,探索新能源发电,对于满足地区负荷增长的需要,振兴东北老工业基地是非常必要的。
2.3 地区环境保护光伏系统应用是发展光伏产业的目的所在,它的应用情况代表着一个国家或地区对光伏产业的重视程度,标志着当地政府对能源及环境的认识水平。
该电站的建成每年可减排一定数量的CO2,在一定程度上缓解了环保压力。
3 项目任务与规模本工程建设于工程学院现有建筑的楼顶屋面上。
项目总装机容量是2.2MWp,25年年均发电量约为230.68万kWh。
采用多晶硅光伏组件,光伏组件分别铺设在学校的各个楼顶上,可铺设太阳能电池方阵的屋顶总面积约为58336平方米。
4 太阳能资源省太阳资源具体的分布如下:图4.1 省太阳能资源分布图根据上图,可以看出为太阳能资源中等地区,年日照数在2200-3000小时,年辐射总量达到5000-5850 MJ/㎡,相当于日辐射量3.8~4.5KWh/㎡。
市属北温带大陆季风气候区,由于北部蒙古高原的干燥冷空气经常侵入,形成了半干旱半湿润易旱地区。
主要气候特点为四季分明,雨热同季,日照充足,日温差较大,降水偏少。
春季少雨多旱风,夏季炎热雨集中,秋季晴朗日照足,冬季寒冷降雪稀。
全年平均气温5.4℃~8.7℃,最高气温37℃,最低气温-36.9℃。
年均日照时数2850~2950小时, 日照率63—68%。
地区太阳能辐射量年际变化较稳定,其数值区间稳定在3828.69~5507.17MJ/㎡之间,年平均辐射总量为5154.68 MJ/㎡。
年降水量450~580mm,平均614.7mm,多集中在7~9月份,无霜期120~155天。
属太阳能资源较丰富区,位于全省前列。
4.1 太阳能资源分析项目所在地多年平均太阳辐射量5200.48MJ/m²/a,属我国第三类太阳能资源区域,但从气象部门获得的太阳能总辐射量是水平面上的,实际光伏组件在安装时通常会有一定的倾角以尽可能多的捕捉太阳能。
混凝土屋顶选择南向倾角41度。
1、地区的年太阳总辐射为5200 MJ/m2左右,即1444kW·h/m2左右;近6年(2004~2009年),年平均太阳总辐射量偏低,为5101.8 MJ/m2,即1417.2kW·h/m2。
该地区的年日照时数为2800 h左右,年日照百分率为63%左右,太阳能资源处于全省前列。
2、太阳能资源以春季和夏季较好、冬季最差为主要特征。
其中,5月份太阳辐射最强,可达到620 MJ/m2左右,12月份辐射最弱,为206 MJ/m2左右。
春、夏、秋、冬四季总辐射量分别约占年总辐射量的31.31%、33.25%、21.01%和14.43%左右。
3、从日平均状况看,11~14时的太阳辐射较强,可占全天辐射量的53%左右,是最佳太阳能资源利用时段,12时前后辐射最强。
4、日照时数以7.5 h左右的天数最多,全年可达到60天左右,占14%以上;6.1~12.0h区间的天数较多,总天数为250天以上,可占全年的69%,年可利用率较高。
综上所述,市太阳能资源丰富,属省太阳能资源丰富区,可以开展太阳能发电和太阳能资源热利用项目。
4.2 太阳能资源初步评价项目所在地太阳能资源条件较好,由于交通运输等条件较好,并网接入条件优越,可以建设屋顶太阳能光伏并网电站。
光伏电站角度的选取采用“四季均衡,保证弱季”的原则。
本项目太阳能电池板采用按最佳倾角41°的方式安装在楼顶屋面上,系统年平均峰值日照时间为4.5小时,年日照总量为1600小时。
5 网架结构和电力负荷5.1 电力负荷现状工程学院配电服务围2011年最大用电负荷为2400千瓦,最小用电负荷为0.2千瓦。
配电区输电电压为10/0.4千伏,变电站容载比为1.25。
变压器7台,其中2*1600kVA有1台,2*630kVA共6台,总容量1.07万千伏安。
表5.1 工程学院变电站基本负荷资料汇总表5.2.电站厂址选择工程学院分布式光伏发电项目拟选址在工程学院现有的建筑物楼顶上建设太阳能电站,在开发利用太阳能资源的同时节省了土地资源。
根据光伏电站的区域面积、太阳能资源特征、安装条件、交通运输条件、地形条件,结合气象站的相关资料等,同时考虑光伏电站的经济性、可行性,初步规划出分布式光伏发电项目。
该项目建设地点完全按照国家有关规定规划建设,经实际考察,无遮挡现象,具有以下特点:(1)富集的太照资源,保证很高的发电量;(2)靠近主干电网,以减少新增输电线路的投资;(3)主干电网的线径具有足够的承载能力,在基本不改造的情况下有能力输送光伏电站的电力;(4)离用电负荷近,以减少输电损失;(5)便利的交通、运输条件和生活条件;(6)能产生附加的经济、生态效益,有助于抵消部分电价成本;(7)良好的示性,国家电网启动分布式光伏发电支持政策。
6 太阳能光伏发电系统设计6.1 光伏组件选择6.1.1 标准和规(1) IEC61215 晶体硅光伏组件设计鉴定和定型(2) IEC6173O.l 光伏组件的安全性构造要求(3) IEC6173O.2 光伏组件的安全性测试要求(4) GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》(5) SJ/T11127-1997《光伏(PV)发电系统过电压保护—导则》(6) GB/T 19939-2005《光伏系统并网技术要求》(7) EN 61701-1999 光伏组件盐雾腐蚀试验(8) EN 61829-1998 晶体硅光伏方阵I-V特性现场测量(9) EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验)(10) EN 61345-1998 光伏组件紫外试验(11) GB 6495.1-1996 光伏器件第1部分: 光伏电流-电压特性的测量(12) GB 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求(13) GB 6495.3-1996 光伏器件第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据(14) GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法。
(15) GB 6495.5-1997 光伏器件第5部分: 用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 。