国内图书分类号:O613.71 学校代码:10213国际图书分类号:540 密级:公开理学硕士学位论文石墨烯、石墨烯/碳纳米管的制备及其超级电容器性能研究硕士研究生:葛士彬导师:杨春晖教授申请学位:理学硕士学科:无机化学所在单位:化工学院答辩日期:2009年6月授予学位单位:哈尔滨工业大学Classified Index: O613.71U.D.C: 540Dissertation for the Masteral Degree in SciencePREPARATION AND SUPERCAPACITOR PROPERTIES OF GRAPHENE、GRAPHENE/CARBON NANOTUBESCandidate:Ge ShibinSupervisor:Prof.Yang ChunhuiAcademic Degree Applied for:Master of Science Speciality:Inorganic Chemistry Affiliation:School of Chemical Engineering Date of Defence:June, 2009Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学理学硕士学位论文摘要随着社会经济的发展,人们对于清洁能源以及生态环境越来越关注,超级电容器作为一种新型的储能器件,由于其无污染、高效的优良特性,越来越受到人们的重视。
石墨烯自2004年问世以来,已经在诸多领域引起了广泛的关注,各国科学家都在争先恐后的研究石墨烯的各种特殊的性质。
石墨烯的理论比表面积高达2630m2/g,而且其导电性非常好,是制造超级电容器的理想材料。
采用Hummers还原氧化石墨法制备了石墨烯,使用AFM、SEM、TG表征了其结构与形貌,讨论了干燥温度和溶剂对石墨烯形貌的影响,结果表明,石墨烯样品的厚度为0.59nm,低温干燥可以使石墨烯保持良好的片状结构,有水存在时可以使石墨烯更好的分散。
采用石墨烯为电极材料制备出超级电容器,研究了粘结剂含量、石墨烯涂覆量、电极成型压力、电解液对石墨烯电极电容性能的影响,结果表明,随着PVDF含量的增加,掉粉现象消失,等效内阻增大;石墨烯涂覆量太少比容量小,太多容易掉粉;随着电极成型压力的增加,比容量逐渐减小;在6mol/L的KOH溶液中,所制得的电容器比容量可达72F/g。
通过循环伏安法、恒流充放电法、交流阻抗法研究了石墨烯超级电容器的电化学性能,结果表明,电容器在不同电压扫描速率下表现出良好的可逆性和双电层电容特性,可大电流充放电,等效串联内阻小。
将碳纳米管引入石墨烯体系中,制备出石墨烯/碳纳米管复合材料,扫描电镜结果显示,碳纳米管被成功的负载到了石墨烯上。
采用石墨烯/碳纳米管复合材料为电极材料制备出超级电容器,研究了不同碳纳米管种类、碳纳米管含量对石墨烯电极电容性能的影响,结果表明,采用长度为1-2μm、外径10-20nm的多壁碳纳米管制备的电容器表现出最好的电容性能,比容量达112F/g,随着碳纳米管含量的增加,比电容增加,但过多反而使比电容下降。
通过循环伏安法、恒流充放电法、交流阻抗法研究了石墨烯/碳纳米管超级电容器的电化学性能,结果表明,电容器在不同电压扫描速率下表现出良好的可逆性和双电层电容特性,甚至60mV/s 时仍表现出很好的电容特性,可大电流充放电,充放电效率高,等效串联内阻小。
关键词石墨烯;超级电容器;碳纳米管;比容量哈尔滨工业大学理学硕士学位论文AbstractWith the economic development, there is environment-friendly energy, and ecological environment has become increasingly concerned about a new type of super-capacitors as the energy storage devices, because of its non-polluting, high-performance characteristics of the fine, it has gained more and more attention. Graphene Since its inception in 2004, caused in many fields has been widespread concern, the scientists are scrambling graphene research the nature of the various special. The theory of graphene surface area as high as 2630m2 / g, and its very good electrical conductivity is the ideal material for supercapacitor.Using Hummers method to restore graphite oxide to prepare graphene, the use of AFM, SEM, TG characterization of the structure and morphology, discussed the drying temperature and solvent on the morphology of graphene. Results show that thickness of the graphene sample is 0.59nm, low-temperature drying can maintain good graphene sheet structure, the presence of water can make a better dispersion of graphene.Preparing supercapacitors by using graphene for electrode materials,studying effect of the binder content, the volume of graphene coated, electrode forming pressure on capacitance characteristics of supercapacitor.The results showed that with the increase of PVDF content equivalent resistance increases and amost don’t drop powder; the specific capacitance increase with the coated graphene weight but when it’s too much graphene will easy to drop powder;with the electrode forming pressure increases, the specific capacitance in 6mol/L of KOH solution obtained to 72F/g. Cyclic voltammetry, constant current charge-discharge, AC impedance method were used to study the graphene electrochemical supercapacitor performance, results show that at different scan rates showed good reversibility and characteristics of electric double layer capacitor, can be high-current charge-discharge and has a small equivalent series resistance.The introduction of the carbon nanotubes to graphene system, prepared graphene / carbon nanotube composites, scanning electron microscopy showed that carbon nanotubes have been successfully load on the graphene. Graphene / carbon nanotubes composite electrode materials were used for preparing supercapacitors, studied the different types of carbon nanotubes, carbon nanotube content on effect of the electrode哈尔滨工业大学理学硕士学位论文capacitance, the results show that supercapccitor use the length of 1-2 μm, diameter of 10-20nm multi-walled carbon nanotube show the best performance of the capacitance and has the specific capacity of 112F/g. The content of carbon nanotubes with an increase in specific capacitance, but it declined when it’s too much. Cyclic voltammetry, constant current charge-discharge, AC impedance method, were were used to study graphene / carbon nanotubes electrochemical supercapacitor performance, results show that at different voltage scan rates the capacitor showed good reversibility and double-layer capacitance characteristics, and even 60mV/s was still show a very good performance characteristics of the capacitor, can charge and discharge current, has a high charge-discharge efficiency, and a small equivalent series resistance.Keywords graphene, supercapacitor, carbon nanotube, specific capacitance哈尔滨工业大学理学硕士学位论文目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 石墨烯概述 (1)1.2 石墨烯制备方法进展及应用 (2)1.2.1 石墨烯研究进展 (2)1.2.2 石墨烯应用研究现状 (4)1.3 超级电容器概述 (6)1.3.1 超级电容器特点及分类 (6)1.3.2 超级电容器原理 (7)1.4 超级电容器的研究进展 (9)1.4.1 超级电容器电极材料研究进展 (9)1.4.2 超级电容器的应用 (11)1.5 课题研究的目的意义和主要内容 (12)第2章实验材料及表征方法 (13)2.1 实验材料 (13)2.1.1 实验试剂 (13)2.1.2 实验设备 (13)2.2 表征方法 (14)2.2.1 形貌及结构表征 (14)2.2.2 电化学性能表征 (14)第3章石墨烯的制备及结构表征 (16)3.1 实验部分 (16)3.1.1 石墨烯的制备 (16)3.2 石墨烯的结构与形貌表征 (18)3.2.1 物相和结构表征 (18)3.2.2 原子力显微镜测试表征 (19)3.2.3 场发射扫描电镜测试表征 (20)3.2.4 热重分析 (22)哈尔滨工业大学理学硕士学位论文3.3 本章小结 (25)第4章石墨烯超级电容器性能研究 (26)4.1 引言 (26)4.2 石墨烯超级电容器的制备与表征 (26)4.2.1 石墨烯电极片的制备与形貌表征 (26)4.2.2 电容器的装配 (27)4.3 影响石墨烯电极片比容量的工艺参数 (27)4.3.1 粘结剂含量 (27)4.3.2 石墨烯涂覆量 (28)4.3.3 电极成型压力 (29)4.3.4 电解液 (29)4.4 石墨烯超级电容器性能研究 (30)4.4.1 循环伏安特性研究 (30)4.4.2 恒流充放电性能研究 (32)4.4.3 交流阻抗性能研究 (33)4.4.4 漏电流研究 (34)4.4.5 循环寿命研究 (35)4.5 本章小结 (35)第5章石墨烯/碳纳米管超级电容器性能研究 (36)5.1 引言 (36)5.2 石墨烯/碳纳米管超级电容器的制备与表征 (37)5.2.1 石墨烯/碳纳米管复合材料的制备 (37)5.2.2 石墨烯/碳纳米管复合材料的表征 (37)5.2.3 石墨烯/碳纳米管电极片的制作 (38)5.2.4 石墨烯/碳纳米管电极片表征 (39)5.3 影响石墨烯/碳纳米管电极片的工艺参数 (39)5.3.1 碳纳米管的种类 (39)5.3.2 S-MWNT-1020型碳纳米管的用量 (41)5.4 石墨烯/碳纳米管超级电容器性能研究 (41)5.4.1 循环伏安特性研究 (41)5.4.2 交流阻抗性能研究 (43)5.4.3 充放电性能研究 (43)5.4.4 漏电流研究 (44)哈尔滨工业大学理学硕士学位论文5.5 本章小结 (45)结论 (46)参考文献 (47)攻读学位期间发表的学术论文 (52)哈尔滨工业大学硕士学位论文原创性声明 (53)哈尔滨工业大学硕士学位论文使用授权书 (53)致谢 (54)哈尔滨工业大学理学硕士学位论文第1章绪论1.1石墨烯概述石墨烯(graphene)是碳原子紧密堆积成的单层蜂窝状晶格结构的一种碳质新材料[1],其厚度仅为0.335nm,仅相当于头发丝直径的20万分之一,是构建其他维数碳质材料(如零维富勒烯、一维碳纳米管、三维石墨)的基本单元(图1-1)。