当前位置:文档之家› 热力学第一定律的内容及应用

热力学第一定律的内容及应用

目录摘要 (1)关键字 (1)Abstract: ......................................................................................... 错误!未定义书签。

Key words ....................................................................................... 错误!未定义书签。

引言 (1)1.热力学第一定律的产生 (1)1.1历史渊源与科学背景 (1)1.2热力学第一定律的建立过程 (2)2.热力学第一定律的表述 (3)2.1热力学第一定律的文字表述 (3)2.2数学表达式 (3)3.热力学第一定律的应用 (4)3.1焦耳实验 (4)3.2热机及其效率 (5)总结 (7)参考文献 (7)热力学第一定律的内容及应用摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。

本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。

关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率引言在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。

在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。

直至热力学第一定律发现后,第一类永动机的神话才不攻自破。

本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。

1.热力学第一定律的产生1.1历史渊源与科学背景人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。

中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。

北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。

”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。

恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。

但是人类对热的本质的认识却是很晚的事情。

18世纪中期,苏格兰科学家布莱克等人提出了热质说。

这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。

十九世纪以来热之唯动说渐渐地为更多的人们所注意。

特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则动的结论。

热动说较好地解释了热质说无法解释的现象,如摩擦生热等。

使人们对热的本质的认识大大地进了一步。

戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功相当提供了有相当说服力的实例,激励着更多的人去探讨这一问题。

1.2热力学第一定律的建立过程在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。

于是,热力学应运而生。

1798年,汤普生通过实验否定了热质的存在。

德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。

焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。

德国物理学家、医生迈尔:德国物理学家、医生迈尔(JuliuRobert Mayer,1814~1878)1840年2月到1841年2月作为船医远航到印度尼西亚。

他从船员静脉血的颜色的不同,发现体力和体热来源于食物中所含的化学能,提出如果动物体能的输入同支出是平衡的,所有这些形式的能在量上就必定守恒。

他由此受到启发,去探索热和机械功的关系。

他将自己的发现写成《论力的量和质的测定》一文,但他的观点缺少精确的实验论证,论文没能发表(直到1881年他逝世后才发表)。

迈尔很快觉察到了这篇论文的缺陷,并且发奋进一步学习数学和物理学。

1842年他发表了《论无机性质的力》的论文,表述了物理、化学过程中各种力(能)的转化和守恒的思想。

迈尔是历史上第一个提出能量守恒定律并计算出热功当量的人。

但1842年发表的这篇科学杰作当时未受到重视。

1843年8月21日焦耳在英国科学协会数理组会议上宣读了《论磁电的热效应及热的机械值》论文,强调了自然界的能是等量转换、不会消灭的,哪里消耗了机械能或电磁能,总在某些地方能得到相当的热。

焦耳用了近40年的时间,不懈地钻研和测定了热功当量。

他先后用不同的方法做了400多次实验,得出结论:热功当量是一个普适常量,与做功方式无关。

他自己1878年与1849年的测验结果相同。

后来公认值是427千克重·米每千卡。

这说明了焦耳不愧为真正的实验大师。

他的这一实验常数,为能量守恒与转换定律提供了无可置疑的证据。

1847年,亥姆霍兹发表《论力的守恒》,第一次系统地阐述了能量守恒原理,从理论上把力学中的能量守恒原理推广到热、光、电、磁、化学反应等过程,揭示其运动形式之间的统一性,它们不仅可以相互转化,而且在量上还有一种确定的关系。

能量守恒与转化使物理学达到空前的综合与统一。

将能量守恒定律应用到热力学上,就是热力学第一定律[1]。

2.热力学第一定律的表述2.1热力学第一定律的文字表述自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递中能量的数量保持不变。

该定律就称为热力学第一定律,也称为能量转换与守恒定律,这一定律也被表示为:第一类永动机(不消耗任何形式的能量而能对外做功的机械)是不能制作出来的[2]。

2.2数学表达式2.2.1内能定理将能量守恒与转换定律应用于热效应就是热力学第一定律,但是能量守恒与转化定律仅是一种思想,它的发展应借助于数学。

马克思讲过,一门科学只有达到了能成功地运用数学时,才算真正发展了。

另外,数学还可给人以公理化方法,即选用少数概念和不证自明的命题作为公理,以此为出发点,层层推论,建成一个严密的体系。

热力学也理应这样的发展起来。

所以下一步应该建立热力学第一定律的数学表达式。

第一定律描述功与热量之间的相互转化,功和热量都不是系统状态的函数,我们应该找到一个量纲也是能量的,与系统状态有关的函数(即态函数),把它与功和热量联系起来,由此说明功和热量转换的结果其总能量还是守恒的。

在力学中,外力对系统做功,引起系统整体运动状态的改变,使系统总机械能(包括动能和外力场中的势能)发生变化。

系统状态确定了,总机械能也就确定了,所以总机械能是系统状态的函数。

而在热学中,煤质对系统的作用使系统内部状态发生改变,它所改变的能量发生在系统内部。

内能是系统内部所有微观粒子(例如分子、原子等)的微观的无序运动能以及总的相互作用势能两者之和。

内能是状态函数,处于平衡态系统的内能是确定的。

内能与系统状态之间有一一对应的关系。

内能定理从能量守恒原理知:系统吸热,内能应增加;外界对系统做功,内能也增加。

若系统既吸热,外界又对系统做功,则内能增加应等于这两者之和。

为了证明内能是态函数,也为了能对内能做出定量的定义,先考虑一种较为简单的情况——绝热过程,即系统既不吸热也不放热的过程。

焦耳做了各种绝热过程的实验,其结果是:一切绝热过程中使水升高相同的温度所需要做的功都是相等的。

这一实验事实说明,系统在从同一初态变为同一末态的绝热过程中,外界对系统做的功是一个恒量,这个恒量就被定义为内能的改变量,即绝热W U U =-12(内能定理)因为绝热W 仅与初态、末态有关,而与中间经历的是怎样的绝热过程无关,故内能是态函数[3]。

2.2.2热力学第一定律的数学表达式若将绝热W U U =-12推广为非绝热过程,系统内能增加还可来源于从外界吸热Q ,则W Q U U +=-12(热力学第一定律一般表达式)这就是热力学第一定律的数学表达式。

前面已讲到,功和热量都与所经历的过程有关,它们不是态函数,但二者之和却成了仅与初末状态有关、而与过程无关的内能改变量了[4]。

3.热力学第一定律的应用3.1焦耳实验理想气体的内能仅是温度的函数, 即()U U T = (1)这一规律称为焦耳定律,是一个很重要的定律, 它是理想气体宏观定义的两个条件之一。

从微观角度很容易理解, 因为理想气体忽略分子间的作用力, 不考虑分子问的相互作用势能。

在宏观理论中, 一般是通过介绍焦耳实验得到焦耳定律的。

取1摩尔气体, 由热力学关系式1T U VU V T V T U ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 可以得到,m p T UU T C V U ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 其中U ,V 和,m v C ,分别为气休的摩尔内能、摩尔体积和定容摩尔热容量,T 为气休的热力学温度,为了测定气体的内能对体积的依赖关系, 焦耳曾于1845年做了如图所示的气体自由膨胀实验,容器A 中充满被压缩的气体,容器B 为真空,A 、B 相联处用一活门C 隔开, 整个装置放入量热器的水中。

当活门C 打开后, 气体将自由膨胀充满整个容器。

这就是著名的焦耳实验。

焦耳测量了气体膨胀前后水的平衡温度,发现水的平衡温度没有改变。

这一结果说明两点, 第一,气体在膨胀过程中与水没有热量交换, 因而气体进行的是绝热自由膨胀过程;第二,膨胀前后气体的温度没有改变。

由第一点,根据热力学第一定律可知。

气体的绝热自由膨胀是一个等内能过程,由第二点再根据(2)式,有0TU V ∂⎛⎫= ⎪∂⎝⎭ 即焦耳实验的结果表明气体的内能仅是温度的函数[5]。

3.2热机及其效率18世纪第一台蒸汽机问世后,经过许多人的改进,特别是纽科门和瓦特的工作,使蒸汽机成为普遍适用于工业的万能原动机,但其效率却一直很低,只有3%5%左右,95%以上的热量都未被利用。

其他热机的效率也普遍不高,譬如:液体燃料火箭效率48%,柴油机效率37%,汽油机效率25%等等。

人们一直在为提高热机的效率而努力,在摸索中对蒸汽机等热机的结构不断进行各种尝试和改进,尽量减少漏气、散热和摩擦等因素的影响,但热机效率的提高依旧很微弱。

这就不由得让人们产生疑问:提高热机效率的关键是什么?热机效率的提高有没有一个限度?1824年法国青年工程师卡诺分析了各种热机的设计方案和基本结构,根据热机的基本工作过程,研究了一种理想热机的效率,这种热机确定了我们能将吸收的热量最大限度地用来对外做有用功(此即著名的卡诺定理),且该热机效率与工作物质无关,仅与热源温度有关,从而为热机的研究工作确定了一个正确的目标[6]。

相关主题