当前位置:文档之家› 纳米材料的应用(目前最全详细讲解)

纳米材料的应用(目前最全详细讲解)


• 4、金纳米微粒用于遗传基因测试
• Verigene 医疗系统采用金纳米微粒涂层对 DNA 分子鉴别关键性的蛋白质和重要基因, 仅仅按一下按钮便能进行复杂的血液测试, 完成医学诊断。
• 5、纳米等级汽车光泽剂 • 如果汽车使用普通光泽剂,涂上之后会出现漩涡 状痕迹,或者出现难看的光泽或雾状结构。 • 汽车美容公司“神鹰1号”称,使用纳米等级巴西 棕榈蜡将永远保持清洁。由于棕榈蜡微粒非常小, 它们呈现出透明状。它们的分子尺寸大小能够填 充细微的瑕疵。目前,防晒霜制造商在生产防晒 霜时也采用了纳米等级的氧化锌。
日用陶瓷-盘子
建筑陶瓷-墙面砖
化工陶瓷
结构陶瓷-陶瓷刀
功能陶瓷-电子陶瓷
图6-电瓷绝缘子
饰面瓦-鱼鳞瓦
氧化锌避雷器
新型无机非金属材料
传统的无机非金属材料具有抗腐蚀、耐 高温等许多优点,但也有质脆、经不起热冲 击等弱点。新型无机非金属材料继承了传统 材料的许多优点,并克服某些弱点,使材料 具有更加优异的特性,用途更加广泛。新型
可以分为金属材料、无机非金属材料、高分 子材料和复合材料四大类。
无机非金属材料
无机非金属材料指某些元素的氧化物、 碳化物、氮化物、硼化物、硫系化合物(包 括硫化物、硒化物及碲化物)和硅酸盐、钛 酸盐、铝酸盐、磷酸盐等含氧酸盐为主要 组成的无机材料。包括陶瓷、玻璃、水泥、
耐火材料、搪瓷及天然矿物材料等。
无机非金属材料的特性有:1.能承受高温, 强度高。2.具有电学特性。3.具有光学特 性。4.具有生物功能。
氧化铝陶瓷具有机械强度高、硬度大、 高频介电损耗小、高温绝缘电阻高、耐化学 腐蚀性和导热性良好等优良综合技术性能, 以及原料来源广、价格相对便宜、加工制造 技术较为成熟等优势,已被广泛应用于电子、 电器、机械、化工、纺织、汽车、冶金和航 空航天等行业,成为目前世界上用量最大的 氧化物陶瓷材料。
第8章 纳米材料与纳米技术的应用举例 • 1、纳米啤酒瓶—纳米复合材料 • 米勒醇酒公司采用黏土纳米材料制造塑料啤酒瓶, 可保留二氧化碳,不让氧气轻易进入,避免啤酒 变质,而且不易碎裂。但一些消费者关注纳米材 料用于食物包装是否安全,是否它们会像灰尘一 样对人体无害。
2 纳米防弹衣及其他服装
• 因纳米碳管既轻又强度极高,是钢的10—100倍, 用它来作防弹衣就像用羽绒做成的防寒服一样, 既可折来叠去,又能抵御强大的子弹的冲击力。
纳米服装
二个月不用洗——信不信由你
• 3、纳米电池 • 日常充电电池中,锂离子从钴酸锂正极快速地穿过 隔膜抵达碳负极,这种传统充电电池功率较低,很 快就会耗完电,使用时还很容易着火或爆炸。 • 美国 MIT 的常业明教授采用新型纳米材料—磷酸铁 锂代替正极,可以大幅改善充电电池的性能。目前, 一些公司现已开始使用这种纳米电池应用于高功率 电器和仪器,这种电池安装在雪佛莱电动汽车,该 款汽车于2010年上市。
氧化铝陶瓷电阻 纺织瓷件
氧化铝髋关节
高压钠灯
高纯氧化铝透明陶瓷管
氮化硅陶瓷 氮化硅陶瓷的性能:作为一种理想的高温结构材料, 最主要的应具备如下性能:(1)强度好、韧性好;(2) 抗氧化性好;(3)抗热震性好;(4)抗蠕变性好;(5) 结构稳定性好;(6)抗机械振动。 氮化硅除抗机械振动性能和韧性相对比较差外,其余 几种性能都优于一般陶瓷,曾被誉为“像钢一样强,像金 钢石一样硬,像铝一样轻”。由于制备工艺不同和所获得 显微结构的差别,Si3N4陶瓷的综合性能有很大的变化。 各中资料所提供的数据繁多,下面仅介绍一般参考值。
光学性质 :由于量子尺寸效应,纳米半导体微
粒的吸收光谱一般存在蓝移现象,其光吸收率很大, 所以可应用于红外线感测器材料。
生物医药材料应用 :纳米粒子比红血细胞
(6~9nm)小得多,可以在血液中自由运动,如果利 用纳米粒子研制成机器人,注入人体血管内,就可以 对人体进行全身健康检查和治疗, 疏通脑血管中的 血栓,清除心脏动脉脂肪沉积物等,还可吞噬病毒, 杀死癌细胞。在医药方面,可在纳米材料的尺寸上直 接利用原子、分子的排布制造具有特定功能 的药品 纳米材料粒子将使药物在人体内的输运更加方便。
玻璃、生化玻璃、溶胶-凝胶玻璃等。
图6-中空玻璃结构示意图
中空玻璃结构示意图
空心玻璃砖用于建筑隔断
热反射玻璃在建筑物上大量使用
陶瓷
陶瓷是指以天然或人工合成的无 机非金属物质为原料,经过成形和高 温烧结而制成的固体材料和制品。
陶鹰鼎——仰韶文化庙底沟类型 高36cm
三彩——我国古代陶器中一颗璀灿的明珠
光导纤维 光导纤维是现代科学创造的奇迹之一, 是使光像电流一样沿着导线传输。不过, 这种导线不是一般的金属导线,而是一种 特殊的玻璃丝,人们称它为光导纤维,又 叫光学纤维,简称光纤 。







光纤通信的特点 (1)传输频带极宽,通信容量很大。 (2)传输衰减小,可用于远距离无中断传输。 (3)信号串扰少,传输质量高。 (4)抗电磁干扰,保密性好。 (5)光纤尺寸小,质量轻,便于运输和铺设。 (6)耐化学侵蚀,适用于特殊环境。 (7)原料资源丰富。 (8)节约有色金属。
括无机玻璃、有机玻璃、金属玻璃等;狭义 上仅指无机玻璃,最常见的是硅酸盐玻璃。 这里主要谈无机玻璃。
玻璃制品的分类 无机玻璃的化学组成包括有众多元素的氧化物或非氧化物。 (1)普通玻璃 普通玻璃是以硅酸盐系统为主要基础的传统玻璃。包括 有平板玻璃、日用玻璃、光学玻璃、电真空玻璃、点光源玻 璃、玻璃纤维等。 (2)特种玻璃 随着社会和科学的发展,在玻璃材料科学领域中,由于 某些新品种是根据特殊用途专门研制的,其成分、性能、制 造工艺均与一般工业和日用玻璃有所差别,它们往往被归入 专门的一类,叫做特种玻璃。这些特种玻璃逐渐脱离了传统 玻璃的基础系统范围。常见的特种玻璃有光子学玻璃、微晶
光纤导管胃镜
利用光纤作手术
光纤式传感器
光纤式传感器
金属材料 金属是指具有良好的导电性和导热性, 有一定的强度和塑性的并具有光泽的物质, 如铜、锌和铁等。而金属材料则是指由金 属元素或以金属元素为主组成的具有金属 特性的工程材料,它包括纯金属和合金两 类。
纳米材料的概念
从迄今为止的研究状况看,关于纳米技术分为三种概念。 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机 器》一书中提出的分子纳米技术。根据这一概念,可以使组合 分子的机器实用化,从而可以任意组合所有种类的分子,可以 制造出任何种类的分子结构。这种概念的纳米技术未取得重大 进展。
纳米材料的性质和应用
力学性质:纳米结构的材料强度与粒径 成反比。应用纳米技术制成超细或纳米晶粒 材料时,其韧性、强度、硬度大幅提高,使 其在难以加工材料刀具等领域占据了主导地 位。使用纳米技术制成的陶瓷、纤维广泛地 应用于航空、航天、航海、石油钻探等恶劣 环境下使用。
磁学性质 :利用纳米粒子的隧道量子效应和
第三种概念是从生物的角度出发而提出的。本来,生物在 细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、 原子和分子内的运动规律和特性的一项崭新技术。科学家们在 研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、 几十个可数原子或分子,显著地表现出许多新的特性,而利用 这些特性制造具有特定功能设备的技术,就称为纳米技术。
纳米技术是一门交叉性很强的综合学科,研 究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子 学、纳米材料学、纳米机械学、纳米化学等学科。 从包括微电子等在内的微米科技到纳米科技,人 类正越来越向微观世界深入,人们认识、改造微 观世界的水平提高到前所未有的高度。
• 9、纳米止血绷带 • 美国加州大学圣塔芭芭拉分校化学家莎拉-贝克 等意识到铝矽酸盐纳米微粒可影响人体自然的凝 血进程,并已经使用铝矽酸盐纳米微粒测试了患 者的凝血功能。 • 这种纳米绷带已申请了专利权,预计在战场上可 以止住严重的伤口流血,能够有效地挽救战场上 的受伤士兵。
***
8 纳米材料的具体应用
库仑堵塞效应制成的纳米电子器件具有超高速、 超容量、超微型低能耗的特点,有可能在不久的 将来全面取代目前的常规半导体器件。
热学性质:纳米材料的比热和热膨胀系数都
大于同类粗晶材料和非晶体材料的值,这是由于 界面原子排列较为混乱、原子密度低、界面原子 耦合作用变弱的结果。因此在储热材料、纳米复 合材料的机械耦合性能应用方面有其广泛的应用 前景。
• 7、金纳米微粒女性验孕纸 • 女性验孕纸测试条码上覆盖抗体的一些金纳米微 粒可以快速锁定绒毛膜促性腺激素,从而使验孕测 试更加快速有效。
• 8、纳米网球 • 威尔逊体育用品公司采用由纳米科技公司 InMat研 制的纳米技术制造出高端双核网球,这种黏性纳 米微粒技术将使网球更加坚硬、使用时间更长。 • 但是美国网球爱好者们并不想购买价格昂贵的网 球,威尔逊公司不得不停止这种纳米网球的制造 生产。
第二种概念把纳米技术定位为微加工技术的极限。也就是 通过纳米精度的“加工”来人工形成纳米大小的结构的技术。 这种纳米级的加工技术,也使半导体微型化即将达到极限。现 有技术即便发展下去,从理论上讲终将会达到限度。这是因为, 如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄, 这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解 决这些问题,研究人员正在研究新型的纳米技术。
传统无机非金属材料
水泥 水泥呈粉末状,当它与水混合后成为 可塑性浆体,经一系列物理化学作用凝结 硬化变成坚硬石状体,并能将散粒状材料 胶结成为整体。水泥浆体不仅能在空气中
硬化,还能在水中硬化、保持并继续增长 其强度,故水泥属于水硬性胶凝材料。
玻璃
玻璃是由熔融物冷却、硬化而得到的非 晶态固体。其内能和构形熵高于相应的晶体。 其结构为短程有序,长程无序。从熔融态转 变为固体时有一转变温度Tg。广义的玻璃包
相关主题