高中数学思想专题讲座---整体的思想方法一、知识要点概述解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法.在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。
二、解题方法指导1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。
2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。
3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。
三、整体的思想方法主要表现形式1、整体补形【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中图1 AB C A’ B’ D’D心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a ,求碳原子到各个氢原子的距离.思路:透过局部→整体补形→构建方程 解:显然,四面体的四个顶点在以中心(碳原子)为球心,中心到各顶点(氢原子)的距离为半径的球面上.如图,将此四面体ABCD 补成正方体BD’,其中A’,B’,D’也在球面上.设碳原子到每个氢原子的距离为x ,则2x= BD’,BD’、AB (a )、AA’之间的关系是a=AB=2AA’,2x=BD’=3AA’,因此,2x=,23a ⋅a x 46=∴.即碳原子到各个氢原子的距离为a 46. 评注:这里,我们将一个正四面体补成一个正方体,则正四面体的中心与各顶点的距离与正四面体棱长通过正方体的棱长搭桥立即建立联系,局部问题便在正方体这个整体内快速获解,体现了整体补形较高的思维价值.在立几中,我们常常将四面体补成正四面体或平行六四面体、正四面体补成正方体、过同一个顶点的三条棱两两垂直的三棱锥(或四面体)补成长方体、四棱锥补成平行六面体,等等.近几年的高考题或高考模拟题中,经常出现这类问题,试题常常以选择题、填空题的形式出现,具有一定的创新性.复习中大家要注意总结这种问题的补形规律,力争在高考中速战速决.【例2】、如图2,已知三棱锥子P —ABC ,234,10,241PA BC PB AC PC AB ======,则三棱锥子P —ABC 的体积为( )。
4080160240AB C D分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶点到底面的高无法作出,自然无法求出。
若能换个角度来思考,注意到三棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不难解决。
解析:如图3所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易知三棱锥P —ABC 的各边分别是长方体的面对角线。
PE=x,EB=y,EA=z 不妨令,则由已知有:2222221001366,8,10164x y x z x y z y z ⎧+=⎪+=⇒===⎨⎪+=⎩,从而知 416810468101606P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=⨯⨯-⨯⨯⨯⨯=2、整体展开【例3】有一个各条棱长均为a 的正四棱锥,现用一张正方形包装纸将其完全包住,不能剪裁,但可以折叠,求包装纸的最小边长.图5 S 3S 1S 2S 4D ABCA BCS D 图4思路:整体展开→化归平几→面积覆盖解:将图4中的正四棱锥整体展开,变为图5中的平面图形,问题则转化为求一个最小的正方形将图5完全覆盖.顺次连结图5中的S 1,S 2,S 3,S 4,易证S 1S 2S 3S 4,为正方形,且为将图5完全包住的最小的正方形.于是其边长为: aa a a a a 26223132150cos 20222+=⋅+=⋅+=-+. 故包装纸的最小边长为a 262+.评注:为研究立体图形的某些特性,如表面积问题、沿表面行走路径最短问题、包装问题、剪裁问题、制作 问题等等,我们常常视立体图图5形为一个整体,将其展开,变为平面图形,通过对平面图形的研究达到解决立几问题的目的.近几年的高考,加大了对这种解题思想方法的考查力度,试题常常以现实生活为背景,设计新颖,能有效考查学生的空间想象能力和综合能力.对此大家应引起重视.3、整体补式【例4】、求sin 2200+cos 2500+sin200cos500的解。
解:令A= sin 2200+cos 2500+sin200cos500B= cos 2200+ sin 2500+ cos 200 sin 50则A+B=2+sin700………①A-B= -070sin 21- ………② ①+②得A=43,故原式=434、整体构形【例5】、已知 x,y,z ),1,0(∈求证:x(1-y)+y(1-z)+z(1-x)<1分析:观察到:x+(1-x)=y+(1-y)=z+(1-z)=1及乘积式,联想到用面积公式。
证明:如图6,构造正三角形,则S △ABD +S △EFC +S △BDF =21x(1-y)sin600+ 21y(1-z) )sin600+ 21z(1-x) )sin600<S △ABC =21×1×1×sin600<1,故x(1-y)+y(1-z)+z(1-x)<1。
5、整体代换【例6】、已知22sin sin =+y x ,求cosx+cosy 的取值范围。
图6解:设u=cosx+cosy ,将已知式与待求式两边平方得:y y x x 22sin sin sin 2sin 21++=,(1) y y x x u 222cos cos cos 2cos ++=。
(2)(1)+(2)得:)cos(22212y x u -+=+,即23)cos(22-=-u y x ,因为2)cos(22≤-≤-y x ,所以22322≤-≤-u ,解得214214≤≤-u 。
所以214cos cos 214≤+≤-y x 。
点评:利用整体代换构建不等式也是求解此类问题的最基本的方法。
【例7】在数列{a n }中,S n 为其前n 项和,若a 1=23,a 2=2且S n+1-3S n +2S n -1+1=0(n ≥2),试判断{a n -1}(n ∈N*)是不是等比数列,为什么?思路:透过局部→重新组合→整体代换解:将已知等式重新组合,得(S n+1-S n )-2(S n -S n -1)+1=0 又因为a n+1=S n+1-Sn ,a n =S n -S n -1(n ≥2), ∴a n+1-2a n +1=0,即a n+1-1=2(a n -1), ∴111--+n n a a =2(n ≥2)(*)当n=1时,2123121112=--=--a a ,因此(*)式对n ∈N*成立.故{a n -1}(n ∈N*)是等比数列.评注:这里,如果将S n+1、S n 与S n -1均用求和公式代入,将会十分繁难,而从S n+1-3S n +2S n-1+1=0整体着眼,实施整体代换,解题过程十分简捷、明快.整体代换在解题中往往能起到化难为易、化繁为简的作用,高考中以简化数列、解几运算居多.6、整体换元【例8】、已知xy y x ,y x R y x ++=+∈+求1,,22的最大值 解析:由,y x R y x 1,,22=+∈+首先想到用三角换元即令)2,0(.......sin cos πθθθ∈⎩⎨⎧==y x ,则θθθθcos sin cos sin ++=++xy y x ,直接求解较困难,于是又令21cos sin cos sin 21)]2,1((cos sin 22-=⇒+=⇒∈=+t t t t θθθθθθ,从而有.2212221)1(21212121cos sin cos sin 222+++===∴-+=-+=-+=++=++的最大值为时即易知当xy y ,x y x t t t t t t xy y x θθθθ点评:本题利用整体换元成功地实现了二元函数问题一元化转化的目的,这是求解二元函数最值问题的最常用的思想方法。
7、整体设元【例9】、已知密码3•BCPQR=4•PQRABC 其中每个字母都表示一个十进制数字,试将这个密码译成数字形式。
解析:此题有6个未知数,若依次求解,无法达到目的确良,注意到ABCPQR 与PQRABC 之间的轮换关系,可将ABC 与PQR 视为两个整体,分别设ABC=x,PQR=y,则3(1000x+y )=4(1000y+x)∴428x=571y ∵x,y 为三位数且428与571互奇,∴x=571,y=428∴所求密码为3•571428=4•428571.【例10】已知tan αtan β=3, tan 2βα-=2,求cos(α+β)的值.思路:转换思维→整体设元→构建方程解:∵tan2βα-=2, ∴cos(α-β)=2tan 12tan 122βαβα-+--=-53. 设x ⋅=⋅βαβαsin sin ,cos cos )=53-=+y x ① 又xy =3 ②, ①、②联立解得,于是cos(α+β)=x -y=103. 评注:本题条件分散、联系隐蔽,企图由三角恒等变形求解难以达到目标.从待求cos(α+β)与能求cos (α-β)中发现cosαcosβ和sinαsinβ两个整体,而这两个整体又恰好含在tanαtanβ中.因此,通过引进两个新元x , y ,迅速构建出以x , y 为未知数的方程组,使问题顺利获解.其中,整体换元是解题关键性的一步.整体换元是一种重要的解题方法,几乎每年的高考都要从不同的角度对其进行考查.8、整体运算【11】、椭圆内12322=+y x 有一点P (1,1),一直线经过点P 与椭圆交于P 1,P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。