当前位置:文档之家› 江南大学19902009年生物化学历年真题部分问答题答案

江南大学19902009年生物化学历年真题部分问答题答案

1、五只试剂瓶中分别装的是核糖、葡萄糖、果糖、蔗糖和淀粉溶液,试用最简便的化学方法鉴别。

答:依次使用下列化学试剂进行鉴定2、某一已纯化的蛋白无SDS的凝胶电泳图如下所示,两种情况下的电极槽缓冲液都为8.2 从下面两副图给出的信息,有关纯化蛋白的结构你能得出什么结论?该蛋白的PI是大于还是小于8.2?答:非变性聚丙烯酰胺凝胶电泳分离蛋白质时主要是根据各组分的pI的差别。

图(a)的结果只呈现单一的带,根据题中给出的条件,表明该蛋白质是纯净的。

由于SDS是一种带负电荷的阴离子去垢剂,并且具有长长的疏水性碳氢链。

它的这种性质不仅使寡聚蛋白质的亚基拆离,而且还能拆开肽链的折叠结构,并且沿伸展的肽链吸附在上面。

这样,吸附在肽链上的带负电荷的SDS分子使肽链带净负电荷,并且吸附的SDS 量与肽链的大小成正比。

结果是,不同大小的肽链将含有相同或几乎相同的q/r值。

由于聚丙烯酰胺凝胶基质具有筛分效应,所以,分子较小的肽链将比较大的、但具有相同的q/r值的肽链迁移得更快。

若蛋白质是由单一肽链或共价交联的几条肽链构成(在不含β-巯基乙醇的情况下),那么在用SDS处理后进行SDS-PAGE,其结果仍是单一的一条带。

若蛋白质是由几条肽链非共价结合在一起,在用SDS处理后进行SDS-PAGE,则可能出现两种情况:一种仍是一条带,但其位置发生了变化(迁移得更快),表明此蛋白质是由几条相同的肽链构成,另一种可能出现几条带,则可以认为该蛋白质是由大小不同的几条肽链构成。

图(b)的结果表明该蛋白质是由两种大小不同的肽链借非共健结合在一起的寡聚体蛋白质。

从图(b)的电泳结果我们可以断定该蛋白质的等电点低于8.2。

3、含有以下四种蛋白质混合物:A,分子量12000,pI=10;B,分子量62000 ,pI=3;C,分子量28000,pI=7;D,分子量9000,pI=5。

若不考虑其他因素,当它们(1)流过DEAE-纤维素阴离子交换柱时,用线性盐洗脱时。

(2)流经SephadexG-75凝胶过滤柱时,这些蛋白质的洗脱顺序如何?阴离子交换柱起始pH可选择什么范围。

答:(1)流过DEAE-纤维素阴离子交换柱时,洗脱下柱的顺序为等电点依次下降的顺序:A→C→D→B。

阴离子交换柱最先洗脱下来的是碱性蛋白质,然后中性蛋白质,最后酸性蛋白质。

(2)流经SephadexG-75凝胶过滤柱时,按相对分子质量从大到小的顺序被洗脱下来:B→C→A→D。

PH范围:3<PH<104、请解释什么是酶的活力和比活力,并说出这两个指标在酶的纯化过程中可以说明什么。

(我觉得第一种答法太啰嗦了,是别人整理的,可以就第二种那样答吗?)答:酶活力也叫酶活性,可以用酶活力单位表示,国际酶活力单位(U)的定义是在最适条件下,1min内转化1μ mol底物所需要的酶量,或者是转化1μ mol的有关基因的酶量(1 IU=1μ mol/min)。

另一个酶活力国际单位(Kat)的定义为:在最适条件下,每秒钟能催化1mol底物转化为产物所需的酶量(1Kat=1 mol/S)。

酶活力是由酶催化一定反应的能力决定的,只是酶催化能力的大小,没有具体量的概念,酶活力与总体积或总质量的乘积所代表的总活力则引入量的概念。

每一纯化步骤后存留的总酶活力占化步骤后存留的总酶活力占第一次总活力的百分比可以反映回收率。

比活力是指单位质量(mg蛋白)的酶制剂的酶活力单位数,酶的比活力反应酶的纯度,以及计算纯化倍数。

判断酶分离纯化的优劣有两个指标来衡量,一是总活力的回收;二是比活力提高的倍数。

总活力的回收表示提纯过程中酶的损失情况,活力提高的倍数表示提纯方法的有效程度。

答:酶活力:酶活力是指酶催化某一化学反应的能力,酶活力的大小可以用在一定条件下所催化的某一化学反应的反应速率来表示。

酶活力反应的是反应速率。

在纯化过程中表示酶活力的损失程度。

酶的比活力代表酶的纯度,比活力用每mg蛋白质所含的酶活力单位数表示。

表明纯化过程中纯化的程度。

(可以)5、有一份核酸样品,可能含有少量蛋白质,只允许测定一种元素即可确定其有无蛋白质污染,您选哪一种元素,为什么?答:确定有无蛋白质污染,只需测定样品中是否含有只存在于蛋白质而不存在核酸的元素,如果样品有此元素存在,很明显说明存在蛋白质污染,满足此条件的是硫(S),核酸一般不含硫,而大多数蛋白质含硫。

6、某种溶液中含有三种三肽:Tyr-Arg-Ser,Glu-Met-Phe和Asp-Pro-Lys,α-COOH基团的pK a为3.8;α-NH3基团的pK a为8.5。

在哪种pH(2.0,6.0或13.0)下,通过电泳分离这三种多肽的效果最好。

(10分)答:pH 6.0效果好。

pH6.0能提供更好的分辨率。

pH6.0时,3种肽(Tyr-Arg-Ser,Glu-Met-Phe和Asp-Pro-Lys)都带有不同的电荷,净电荷分别是+1、-1和0;而在pH 2.0时净电荷分别是+2、+1和+2;在pH13.0时净电荷分别是-2、-2和-2。

7、比较底物水平磷酸化和氧化磷酸化的主要异同点。

答:底物水平磷酸化是指产物氧化还原反应过程中,分子内部能量重新分布,使无机磷酸酯化。

形成高能磷酯健,后者在酶的作用下能将能量转给ADP,生成A TP;氧化磷酸化是指与生物氧化相偶联的磷酸化作用,发生在线粒体中,生物氧化过程中的电子传递在线粒体内膜两侧产生了H+浓度差,H+顺浓度差流动时推动了ATP的生成,能量的最终来源是代谢过程中产生的还原型辅酶所含的化学能。

8、什么是蛋白质的变性作用?蛋白质变性后哪些性质会发生改变?答:天然蛋白质分子受到某些物理因素如高温、高压、紫外线照射和表面张力等或化学因素如强酸、强碱、尿素、胍、有机溶剂等的影响生物活性丧失、溶解度降低,不对称性增加以及其他物理化学性质发生改变,这种现象称为蛋白质的变性作用。

变性后的蛋白质称为变性蛋白质。

蛋白质变性的实质是蛋白质分子中的次级键破坏,引起天然构像解体,变性不涉及共价键的断裂。

蛋白质变性后许多性质发生了改变:(1)生物活性丧失:蛋白质的生物活性是指蛋白质具有的酶、激素、毒素、抗原与抗体等活性,以及其他特殊性质如血红蛋白的载氧能力等,这是蛋白质变性的主要特征。

(2)一些侧链基团暴露:蛋白质变性时、原来在分子内部保藏而不易与化学试剂起反应的侧链基团,由于结构的伸展松散而暴露出来。

(3)一些物理化学性质改变:蛋白质变性后,疏水基外露,溶解度降低,易形成沉淀析出;分子形状也发生改变,球状蛋白分子伸展,不对称性加大,表现为粘度增加,旋光性、紫外吸收光谱等改变、扩散系数降低。

(4)生物化学性质的改变:蛋白质变性后,分子结构伸展松散,易被蛋白水解酶分解。

9、描述蛋白质的一级结构及高级结构,并说明一级结构与空间结构的关系。

答:蛋白质是生物大分子,具有明显的结构层次性,由低层到高层可分为一级结构、二级结构、三级结构和四级结构。

蛋白质一级结构:是指肽链的氨基酸组成及其排列顺序,包括二硫键的位置。

氨基酸序列决定蛋白质的高级结构。

蛋白质二级结构:是指蛋白质多肽链主链的空间走向(折叠和盘绕方式),是有规则重复的构象。

天然蛋白质的二级结构主要有四种基本类型:α螺旋,β折叠和β转角和无规卷曲。

复杂的蛋白质分子结构,就由这些比较简单的二级结构单元进一步组合而成。

蛋白质三级结构:多肽链在二级结构、超二级结构和结构域的基础上进一步盘绕、折叠形成的紧密地借各种次级键维持的球状分子构象。

由两条或两条以上肽链通过非共价键构成的蛋白质称为寡聚蛋白质。

其中每一条多肽链称为亚基,每个亚基都有自己的一、二、三级结构。

亚基单独存在时无生物活性,只有相互聚合成特定构象时才具有完整的生物活性。

蛋白质四级结构:具有三级结构的多肽链通过次级键彼此缔合形成的聚集体。

每个具有三级结构的多肽称为亚基。

四级结构就是各个亚基在寡聚蛋白的天然构象中空间上的排列方式。

一级结构是蛋白质的共价键的全部情况,一级结构包含着决定高级结构的因素,蛋白质的种类和生物活性都与肽链的氨基酸种类和排列顺序有关,蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构,蛋白质的空间结构决定于蛋白质的一级结构。

10、请设计一种测定蔗糖酶K m及V max的实验方案,并做简要说明。

答:采用如下几种实验方法进行测定:①V~[S]作图法;②Lineweaver-Burk双倒数作图法;③ Hanes-Woolf作图法;④ Eadie-Hofstee作图法;⑤ Eisenthal和Cornish-Bowden直接线性作图法。

Lineweaver-Burk双倒数作图法:在一系列不同[S]下,测定蔗糖酶的V°,以1/ V°对1/[S]作图,得一直线(如下图所示)。

直线的斜率=K m/V max,在1/ V°轴(纵轴)上的截距是1/ V max,在1/[S] 轴(横轴)上的截距是-1/K m。

(写出Lineweaver-Burk方程)11、试述DNA双螺旋结构(B结构)的理论要点(哪种答法更好)答:(1)两条反向平行的多核苷酸链围绕同一中心轴形成右手双螺旋;(2)磷酸和脱氧核糖形成的主链在外侧,嘌呤碱和嘧啶碱在双螺旋的内侧,碱基平面垂直于中轴,糖环平面平行于中轴;(3)双螺旋的直径2 nm。

螺距3.4 nm,沿中心轴每上升一周包含10个碱基对,相邻碱基间距0.34 nm,之间旋转角度36°;(4)沿中心轴方向观察,有两条螺旋凹槽,称为大沟和小沟;(5)两条多核苷酸之间按碱基互补配对原则进行配对,两条链依靠彼此碱基之间形成的氢键和碱基堆积力而结合在一起。

答:1)DNA分子是由两条方向相反的平行多核苷酸链构成的,一条链的5-末端与另一条链的3-末端相对。

两条链的糖-磷酸主链都是右手螺旋,有一共同的螺旋轴,螺旋表面有一条大沟和一条小沟。

(2)两条链上的碱基均在主链内侧,一条链上的A一定与另一条链上的T配对,G一定与C配对。

(3)成对碱基大致处于同一平面,该平面与螺旋轴基本垂直。

相邻碱基对平面间的距离为0.34nm,双螺旋每旋转一周有10对碱基,螺旋直径为2nm。

第一种更好一点,但没有必要说的那么详细。

12、扼要解释为什么大多数球状蛋白质在溶液中具有下列性质。

(1)当离子强度从零逐渐增加时,其溶解度开始增加,然后下降,最后出现沉淀。

(2)在一定的离子强度下,达到等电点pH值时,表现出最小的溶解度。

(3)加热时沉淀。

(4)加入一种可和水混溶的非极性溶剂,溶解度减少。

(5)如果加入一种非极性强的溶剂,会导致变性。

(15分)答:(1)虽然盐浓度开始增加时能相应稳定带电基团,但其进一步增加将导致盐离子与蛋白质竞争水分子,这不仅会降低蛋白分子的溶剂化,而且会因为促进蛋白分子间的极性互作和疏水相互作用而导致沉淀。

相关主题