当前位置:文档之家› 第七章 实数的完备性

第七章 实数的完备性

第七章 实数的完备性(6学时)§1 关于实数完备性的基本定理教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法.教学重点、难点:重点实数完备性的基本定理.难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下:一、区间套定理与柯西收敛准则定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++⊃=L (2)lim()0n n n b a →∞-=则称{[,]}n n a b 为闭区间套,或简称区间套.定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈=L ,即,1,2,.n n a b n ξ≤≤=L证: 先证存在性Q {[,]}n n a b 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤LL L∴可设 lim n n a ξ→∞=且由条件2有 lim lim()lim n n n n n n n n b b a b a ξ→∞→∞→∞=-+==由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤=L 再证唯一性设ξ'也满足,1,2,.n n a b n ξ'≤≤=L 那么,,1,2,.n n b a n ξξ'-≤-=L 由区间套的条件2得lim()0n n n b a ξξ→∞'-≤-=故有ξξ'=推论 若[,](1,2,)n n a b n ξ∈=L 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有||m n a a ε-<.证 [必要性] 略.[充分性] 已知条件可改为:对任给的0ε>,存在0N >,使得对,m n N ≥有||m n a a ε-≤. 取m N =,有对任给的0ε>,存在0N >,使得对n N ≥有||m n a a ε-≤,即在区间[,]N N a a εε-+内含有{}n a 中几乎所有的项(指的是{}n a 中除有限项的所有项)∴令12ε=则存在1N ,在区间1111[,]22NN a a -+内含有{}n a 中几乎所有的项, 记该区间为11[,]αβ.再令212ε=则存在21()N N >,在区间112211[,]22N N a a -+内含有{}n a 中几乎所有的项, 记该区间为1122112211[,][,][,]22N N a a αβαβ=-+I 也含有{}n a 中几乎所有的项,且满足1122[,][,]αβαβ⊃及221.2βα-≤依次继续令311,,,,22n ε=L L 得一区间列{[,]}n n αβ,其中每个区间中都含有{}n a 中几乎所有的项,且满足11[,][,],1,2,;n n n n n αβαβ++⊃=L110(),2n n n n βα--≤→→∞ 即时{[,]}n n αβ是区间套.由区间套定理,存在唯一的一个数[,],1,2,n n n ξαβ∈=L . 再证lim n n a ξ→∞=.由定理7.1的推论对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n U αβξε⊂即在(,)U ξε内含{}n a 中除有限项的所有项,由定义1'lim n n a ξ→∞=.二、聚点定理与有限覆盖定理定义2 设S 为数轴上产的点集,ξ为定点,若ξ的任何邻域内都有含有S 中无穷多个点,则称ξ为点集S 的一个聚点.例如:1{(1)}nn-+有两聚点1,1ξξ==-. 1{}n有一个聚点0ξ=.(,)a b 内的点都是它的聚点,所以开区间集(,)a b 有无穷多个聚点. 聚点的等价定义;定义2' 对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即0(;)U S ξε≠∅I ,则称ξ为S 的一个聚点.定义2'' 若存在各项互异的数列{}n x S ⊂,则其极限lim n n x ξ→∞=称为S 的一个聚点.三个定义等价性的证明: 证明思路为:2222'''⇒⇒⇒. 定义22'''⇒的证明:由定义2'设ξ为S 的一个聚点,则对任给的0ε>,存在0(,)x U S ξε∈I .令11ε=,则存在01(,)x U S ξε∈I ;令211min(,||)2x εξ=-,则存在022(;)x U S ξε∈I ,且显然21x x ≠;L L令11min(,||)2n n x εξ-=-,则存在0(;)n n x U S ξε∈I ,且显然n x 与11,,n x x -L 互异;L L得S 中各项互异的数列{}n x ,且由1||n n n x n ξε-<≤,知lim n n x ξ→∞=. 由闭区间套定理可证聚点定理.定理7.2 (Weierstrass 聚点定理) 实数轴上的任一有界无限点集S 致少有一个聚点.证 Q S 有界, ∴存在0M >,使得[,]S M M ⊂-,记11[,][,]a b M M =-,将11[,]a b 等分为两个子区间.因S 为无限点集,故意两个子区间中至少有一个含有S 中无穷多个点,记此子区间为22[,]a b ,则1122[,][,]a b a b ⊃且122112()b a ba M -=-=. 再将22[,]ab 等分为两个子区间,则其中至少有一个含有S 中无穷多个点,取出这样一个子区间记为33[,]a b ,则2233[,][,]a b a b ⊃,且133222()2M b a b a -=-=依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃=L20(),2n n n Mb a n --=→→∞ 即{[,]}n n a b 为闭区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈=L .由定理1的推论, 对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂.从而(;)U ξε含有S 中无穷多个点按定义2ξ为S 的一个聚点.推论(致密性定理) 有界数列必含有收敛子列.证: 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,显然成立.若数列{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.由定义2'',存在{}n x 的一个收敛子列(以ξ为极限). 由致密性定理证柯西收敛准则的充分性.柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有||m n a a ε-<.证: [充分性] 先证{}n a 有界,由忆知条件取1ε=,则存在正整数N, 则1m N =+及n N > 时有1||1n N a a +-<由此得111||||1||n n N N N a a a a a +++=-+<+.取121max{||,||,,||,1||}N N M a a a a +=+L 则对一切的正整数n 均有||n a M ≤. 再证{}n a 收敛,由致密性定理,数列{}n a 有收敛子列{}k n a ,设lim k n k a A →∞=由条件及数列极限的定义, 对任给的0ε>,存在0K >,使得对,,m n k N >有||m n a a ε-<,||k n a A ε-<取()k m n k K =≥>时得到 ||||||2k k n n n n a A a a a A ε-≤-+-< 所以lim k n k a A →∞=定义3 设S 为数思轴上的点集,H 为开区间集合(即H 的每一个元素都是形如(,)αβ的开区间).若S 中的任何一个点都有含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,( H 覆盖S ).若H 中开区间的个数是无限的(有限)的,则称H 为S 的一个无限开覆盖(人限开覆盖).如(,),S a b ={(,)|(,)},x x H x x x a b δδ=-+∈H 为S 的一个无限开覆盖.定理7.3(海涅---博雷尔(Heine-Borel)有限覆盖定理) 设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .证 用反证法 设定理的结论不成立,即不能用H 中有限个开区间来覆盖[,]a b .将[,]a b 等分为两个子区间,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为11[,]a b ,则11[,][,]a b a b ⊂,且111()2b a b a -=-. 再将11[,]a b 等分为两个子区间,同样,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为22[,]a b ,则2211[,][,]a b a b ⊂,且2221()2b a b a -=-. 依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃=L1()0(),2n n n b a b a n -=-→→∞ 即{[,]}n n a b 为闭区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖由闭区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈=L ,由于H 为闭区间[,]a b 的一个(无限)开覆盖,故存在(,),H αβ∈使得(,)ξαβ∈.于是,由定理7.1的推论,当n 充分大时有[,](,)n n a b αβ⊂.即用H 中一个开区间就能覆盖[,]n n a b 矛盾.课后记:这一节理论性强,学生学习困难较大,我认为应从以下几个方面和学生共同学习这一节.1 如何理解记忆定理内容.2 如何掌握定理的证明方法.3 怎样应用定理及定理的证明方法去解决问题. 在应用闭区间套定理时,应先构造一个闭区间套,构造的方法一般是二等分法,在应用有限覆盖定理时,应先构造一个开覆盖构造的方法一般与函数的连续性定义结合.应用聚点定理时,应先构造一数列等.教材中P 16322[,]αβ中包含{}n a 的几乎所有项,是因为它中包含{}n a 的第2N 项以后的所有项,这里应强掉,容易被忽略.在下节的教学中就让学一注意到在什么时候用实数的完备性定理,这是一个难点,重点.三、 实数基本定理等价性的证明(未讲)证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: Ⅰ: 确界原理单调有界原理区间套定理Cauchy 收敛准则确界原理 ; Ⅱ: 区间套定理 致密性定理Cauchy 收敛准则 ;Ⅲ: 区间套定理Heine –Borel 有限复盖定理区间套定理 .一. “Ⅰ” 的证明: (“确界原理 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”: 定理7.4 单调有界数列必收敛 .2. 用“单调有界原理”证明“区间套定理”: 定理 7.5 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对,当时, 总有.推论2 若是区间套确定的公共点, 则有↗, ↘, .3. 用“区间套定理”证明“Cauchy收敛准则”:定理 7.6数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )定理 7.6 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用三等分的方法证明,该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:定理7.7非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二. “Ⅱ”的证明:1. 用“区间套定理”证明“致密性定理”:定理7.8 (Weierstrass)任一有界数列必有收敛子列.证(突出子列抽取技巧)定理7.9每一个有界无穷点集必有聚点.2.用“致密性定理”证明“Cauchy收敛准则”:定理7.10数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.三.“Ⅲ”的证明:1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:2. 用“Heine–Borel 有限复盖定理”证明“区间套定理”:§2 闭区间上连续函数性质的证明教学目的要求:掌握定理的证明方法.教学重点、难点:重点是定理的证明方法,难点是什么情况下用哪一个定理.学时安排: 2学时教学方法: 讲授法.教学过程:一. 有界性:命题1 , 在上.证法一 ( 用区间套定理 ). 反证法.证法二 ( 用列紧性 ). 反证法.证法三 ( 用有限复盖定理 ).二.最值性:命题2 , 在上取得最大值和最小值.( 只证取得最大值 )证 ( 用确界原理 ) 参阅[1]P226[ 证法二 ] 后半段.三.介值性:证明与其等价的“零点定理”.命题3 ( 零点定理 )证法一 ( 用区间套定理 ) .证法二 ( 用确界原理 ). 不妨设.令, 则非空有界, 有上确界. 设有. 现证, ( 为此证明且 ). 取>且.由在点连续和, ,. 于是. 由在点连续和,. 因此只能有.证法三 ( 用有限复盖定理 ).四.一致连续性:命题4 ( Cantor定理 )证法一 ( 用区间套定理 ) .证法二 ( 用列紧性 ).五.实数基本定理应用举例:例1 设是闭区间上的递增函数, 但不必连续 . 如果,, 则, 使. ( 山东大学研究生入学试题 )证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )设集合. 则, 不空 ; ,有界 . 由确界原理 ,有上确界. 设, 则.下证.ⅰ)若, 有; 又, 得.由递增和, 有, 可见. 由,. 于是 , 只能有.ⅱ)若, 则存在内的数列, 使↗, ; 也存在数列, ↘,. 由递增, 以及, 就有式对任何成立 . 令, 得于是有.证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或时,或就是方程在上的实根 . 以下总设. 对分区间, 设分点为. 倘有, 就是方程在上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若, 取; 若, 取, 如此得一级区间. 依此构造区间套, 对,有. 由区间套定理, , 使对任何,有.现证.事实上, 注意到时↗和↘以及递增,就有.令, 得于是有.例2 设在闭区间上函数连续, 递增 , 且有,. 试证明: 方程在区间内有实根 .证构造区间套,使.由区间套定理,, 使对, 有. 现证. 事实上, 由在上的递增性和的构造以及↗和↘,, 有.注意到在点连续,由Heine归并原则, 有,, . 为方程在区间内的实根.例3 试证明: 区间上的全体实数是不可列的 .证( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可排成一列:把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个区间不含,记该区间为二级区间. …… .依此得区间套, 其中区间不含. 由区间套定理, , 使对, 有. 当然有. 但对有而, . 矛盾.习题课( 3学时)一.实数基本定理互证举例:例4 用“区间套定理”证明“单调有界原理”.证设数列递增有上界. 取闭区间, 使不是的上界, 是的上界.易见在闭区间内含有数列的无穷多项, 而在外仅含有的有限项. 对分, 取使有的性质.…….于是得区间套,有公共点. 易见在点的任何邻域内有数列的无穷多项而在其外仅含有的有限项,.例5 用“确界原理”证明“区间套定理”.证为区间套. 先证每个为数列的下界, 而每个为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 .设, .易见有和.由,.例6 用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间, 使在内仅有的有限个点. …… .例7 用“确界原理”证明“聚点原理”.证设为有界无限点集. 构造数集中大于的点有无穷多个.易见数集非空有上界, 由确界原理, 有上确界. 设. 则对,由不是的上界中大于的点有无穷多个; 由是的上界,中大于的点仅有有限个. 于是, 在内有的无穷多个点,即是的一个聚点 .课后记强掉应先构造闭区间套、构造开覆盖、构造数列等的方法.通过大量的例子让同学们体会在什么时候用哪一个定理.。

相关主题