(4)神经网络的预测方法
神经网络(Neural Network)是由许多并行的、高度相关的计算处理单元组成,这些单元类似生物神经系统的神经元。
虽然单个的神经元的结构十分简单,但是,由大量神经元相互连接所构成的神经元系统所实现的行为是十分丰富的。
与其它方法相比,神经网络具有并行计算和白适应的学习能力㈤。
神经网络系统是一个非线性动力学系统计算系统。
神经网络模型有许多种类,经常使用的有BP网络、RBF网络、Hopfield网络、Kohonen网络、BAM网络等等,近年又出现了
神经网络与模糊方法、遗传算法相结合的趋势。
浚方法已在交通流预测中得到了应用。
在交通流预测中应用最早使用最多的是反传BP网络。
应用神经网络进行交通流预测的步骤如下:
第一步,根据实际情况,选择适当的网络结构作为预测工具,根据已确定的预测因子和被预测量,决定网络的输入和输出,进而决定网络的结构(网络
各层次的节点数)
第二步,准备样本数据和样本的规范化处理,样本分为训练样本和检验样本;第三步,利用训练样本是对网络进行训练和学习;
第四步,利用检验样本对网络训练结构进行检验,验证网络的泛化能力;
第五步,用训练好的网络,根据已知的数据进行实际预测。
与传统的预测方法相比,神经网络的预测方法的预测精度要好一些。
这主要
是得益于神经网络自身的特点。
神经网络擅长描述具有较强非线性、难于用精确数学模型表达的复杂系统的特性,并且具有自适应能力。
由于神经网络算法是离线学习,在线预测,所以几乎没有延时,实时性很好。
此外,神经网络对预测因子的选择也较为灵活,任何认为与待预测交通流量有关的数据均可纳入输入向量中。
但是,神经网络也有一些弱点,主要表现在以下几个方面:
三、由于使用大量的样本进行训练,所以神经网络的学习训练过程收敛
较慢,容易产生“过度学习”的情况,陷入对样本值的机械记忆而降低了泛化能力。
因此,应用神经网络目前很难做到在线学习,只能将学习与预测分离成两个阶段(一个离线、一个在线)来完成。
四、神经网络的训练与学习是基于训练样本所隐含的预测因子与被预测
量的因果关系,这种学习不能反映外部环境的变化及其对预测的影响。
因此,当预测对象所处的外部环境发生改变,或以某一路段数据训练好的神经网络去预测其它路段(口)的交通流量时,预测的准确率就会大大降低,错误率明显上升。
这是由单一的神经网络的有限学习能力所决定的,表明经过训练的神经网络并不具有良好的“便携性”。
五、截止到目前,各类文献所见的基于神经网络的短期交通流的预测,最小
的预测时间跨度ht.15rain的水平上,对更小的预测周期,神经网络预测的适应性、精度如何,还有待检验。