当前位置:文档之家› 最新 基尔霍夫定律叠加原理戴维南定理

最新 基尔霍夫定律叠加原理戴维南定理


电路的种类很多,不同用途的电路,其形式和结构也各
不相同。由于实际元件构成的实际电路分析起来不方便, 为了更好地分析、研究电路,人们创造了由电路模型构
成的电路图,同时也摸索出了很多分析电路的方法和规
律。
一、电路与电路模型
1.电路及电路组成
电路是为实现和完成人们的某种需求,由电源、 导线、开关及负载等电气设备或元器件组合起来,能 使电流流通的整体,简单地说,就是电流的通路。电 路的主要作用有两方面:一是能实现电能的传输、分 配和转换,如图2-1所示;二是能实现信号的传递和处 理,如图2-2所示。
直流电路是实际应用电路的基础,通过直流 电路知识的学习,掌握电路分析的基本方法、原 理,进而能应用到解决实际电路的问题中。电路 仿真软件的出现,极大地提高了电路的设计和故 障的分析等解决实际电路问题的效率,同时,仿 真软件的使用也是一种很有效的学习电路知识的 方法。
在日常生产生活中,广泛应用着各种电路,它们是 将实际器件按一定方式连接起来形成的电流通路。实际
2.电流的方向
在不同的导电物质中,形成电流的运动电荷可以是正 电荷,也可以是负电荷,甚至两者都有。习惯上把正电荷 移动的方向规定为电流的正方向。 在分析或计算电路时,常常要确定电流的方向。但当 电路比较复杂时,某段电路中电流的实际方向往往难以确 定,此时可先假定电流的参考方向,然后列方程求解,当 解出的电流为正值时,就表示电流方向与参考方向一致, 如图2-6(a)所示;反之,当电流为负值时,就表示电流方 向与参考方向相反,如图2-6(b)所示。
2.开路
3.短路
短路是指电源未经负载而直接由 导线(导体)构成通路时的工作状态, 如图2-5所示。短路时,电路中流过 的电流远大于正常工作时的电流,可 能烧坏电源和其他设备。所以,应严 防电路发生短路。

图2-5 电路短路示意图
三、电流、电压及电动势
1.电流的形成
电流是由于电荷的定向移动形成的。在 金属导体中,电子在外电场作用下有规则地 运动就形成了电流。而在某些液体或气体中, 电流则是由于正离子或负离子在电场力作用 下有规则地运动而形成的。
图2-7 电压参考方向与实际方向的关系
6.电动势
1)电动势的概念 电动势是描述电源性质的重要物理量。在电源外部电路中, 电场力把正电荷由高电位经过负载移动到低电位,那么,在电 源内部电路中,也必定有一种力能够不断地把正电荷从低电位 移到高电位,这种力称为电源力。 2)电动势的参考方向 电动势的作用是把正电荷从低电位点移动到高电位点,使正 电荷的电势能增加,所以规定电动势的实际方向是由低电位指 向高电位,即从电源的负极指向电源的正极。在电路中,电源 的极性和电动势的数值一般都是已知的,所以一般电动势的参 考方向都取与实际方向相同的方向,即由电源的负极指向电源 的正极。 3)电源端电压与电动势的关系 图2-9 电源端电压与电动势的关系
电路及电路中的主要物理量
验证基尔霍夫定律
验证叠加原理及戴维南定理
学习目标
1.了解电路的组成及各部分的作用;
2.了解电路中的基本物理量,并掌握其计算方法; 3.了解电压和电流的方向,并掌握其测量方法; 4.掌握基尔霍夫定律、戴维南定律和叠加原理,并掌握 复杂电路的分析方法。 5.能用仿真的方式验证基尔霍夫定律、戴维南定理及叠 加原理。
图2-1 电能的传输、分配和转换
图2-2 信号的传递和处理
电流经过的路径就是电路,例如,在日常 生活中,把一个灯泡通过开关、导线和干电池 连接起来,就组成了一个照明电路,如图2-3 所示,在这个电路中,把开关合上,电路中就 有电流通过,灯泡就亮起来了。
图2-3 电路的组成
2.电路模型及电路图
图2-6 电流的方向
3.电流的大小
4.电压的概念
电压是用来衡量电场力推动电荷运动,对电 荷做功能力大小的物理量。电路中A、B两点之间 的电压在数值上等于电场力把单位正电荷从A点 移动到B点所做的功。若电场力移动的电荷量为q, 所做的功为W,那么A与B点之间的电压为
5.电压的方向
电压指电路中两点之间的电位差,由此可知,电压是矢 量(即有方向的量),需要指定参考方向。如同需要对电流选定 参考方向一样,在分析、计算电路问题时,往往难以预知一段 电路两端电压的实际方向,因此可先选定一个方向作为电压的 参考方向,如图2-7所示的一段电路,规定A为高电位点,用 “+”表示,B为低电位点,用“-”表示,即选取该段电路电 压的参考方向从A指向B。当电压的实际方向与参考方向一致时, 电压为正值,如图2-7(a)所示;当电压的实际方向与参考方向 不一致时,电压为负值,如图2-7(b)所示。
图2-9 电源端电压与电动势的关系
四、电功与电功率
电功,简单地说就是电流所做的功。电流在经过电 器设备时会发生能量的转换,能量转换的大小就是电流 所做功的大小,用符号“W”表示,单位为焦耳(J)。能 量转换的速率就是电功率,即单位时间内电器设备能量 转换的大小,简称为功率。 电功率的符号用“P”表示,单位为瓦(W)。在电流、 电压关联参考方向下,电功率的计算公式为
图2-4 常用的几种理想元件的电路符号
二、电路的工作状态
1.通路
电路的有载工作状态也即电路的通路状态。通 路是指电源与负载接成闭合回路时的工作状态,这 时电路中有电流通过,如图2-3中当开关闭合时,电
路就是通路状态。必须注意的是,处于通路状态的
各种电气设备的电压、电流和功率等数值不能超过 其额定值。
图2-3(a)所示是用电气设备的实物图形表示的实际电 路。它的优点是很直观,但画起来很复杂,不便于分析 和研究。因此,在分析和研究电路时,总是把这些实际 设备抽象成一些理想化的模型,用规定的图形符号表示, 如图2-3(b)所示。这种用统一规定的图形符号画出的电 路模型图称为电路图。 理想电路元件分为两类:一类是有实际的元件与它对 应,如电阻器、电感器、电容器、电压源和电流源等; 另一类是没有直接与它相对应的实际电路元件,但是它 们的某种组合却能反映出实际电器元件和设备的主要特 性和外部功能,如受控源等。图2-4所示是电工电子技术 中经常使用的几种理想元件的电路符号。
相关主题