拉曼光谱分析技术
1) 由于水的拉曼散射很微弱,拉曼光谱是研究水 溶液中的生物样品和化学化合物的理想工具。
2) 拉曼光谱一次可同时覆盖50-4000波数的区间, 可对有机物及无机物进行分析。相反,若让红外光谱 覆盖相同的区间则必须改变光栅、光束分离器、滤波 器和检测器
3) 拉曼光谱谱峰清晰尖锐,更适合定量研究、数 据库搜索以及运用差异分析进行定性研究。在化学结 构分析中,独立的拉曼区间的强度可以和功能集团的 数量相关。
瑞利散射λ不变 拉曼散射λ变化
λ
λ
拉 曼
增减散 大小射
变λΒιβλιοθήκη 样透过光λ不变品
池
瑞 利
散
射
λ
不 变
CCl4的拉曼光谱 Rayleigh scattering
Stocks lines
anti-Stockes lines
Δν/cm-1
拉曼效应的机制和荧光现象不同,并不吸收激发光,因此不 能用实际的上能级来解释,玻恩和黄昆用虚的上能级概念 说明拉曼效应。
1960年以后,激光技术的发展使拉曼技术得以复兴。 由于激光束的高亮度、方向性和偏振性等优点,成 为拉曼光谱的理想光源。随探测技术的改进和对被 测样品要求的降低,目前在物理、化学、医药、工 业等各个领域拉曼光谱得到了广泛的应用,越来越 受研究者的重视。
1.2 拉曼光谱技术的优越性
提供快速、简单、可重复且更重要的是无损伤的定性 定量分析,它无需样品准备,样品可直接通过光纤探 头或者通过玻璃、石英和光纤测量。此外
●另一种是分子处于激发态振动能级,与光子碰撞后,分子跃
迁回基态而将确定的能量hν传给光子。则散射光子的能量 变+为νh的(谱ν线0+。ν)= hν,频率增加至ν0+ν,形成频率为ν0
●两种情况,散射光子的频率都发生变化了,减小或增加了。
Raman散射
Raman散射的两 E1 + h0 种跃迁能量差: E2 + h0
1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉
曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光
谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术
拉曼光谱分析技术
2 拉曼光谱的基本原理
2 拉曼光谱的基本原理
2.1 瑞利散射和拉曼散射
STOKES
ANTI-STOKES
Rayleigh
特征的
0 -
0
0 +
拉曼位移的特点
对不同物质: 不同; 对同一物质:与入射光频率无关;只与分子振 动或转动频率有关,表征分子振-转能级的特征物理 量;定性与结构分析的依据
假设散射物分子原来处于电子基态,振动能级如上图所示。当 受到入射光照射时,激发光与此分子的作用引起极化可以 看作虚的吸收,表述为跃迁到虚态虚能级上的电子立即跃 迁到下能级而发光,即为散射光。存在如图所示的三种情 况,散射光与入射光频率相同的谱线称为瑞利线,与入射 光频率不同的谱线称为拉曼线。
激发虚态
获得能量后,跃迁到激发虚态.
2.2 拉曼效应
拉曼效应为光子与样品中分子的非弹性碰撞,即光子与分子 相互作用中有能量的交换。
入射光子的能量为hν0,当与分子碰撞后,可能出现两种情况:
●第一种是分子处于基态振动能级,与光子碰撞后,分子从入
射光子获取确定的能量hν达到较高的能级。则散射光子的 能为ν量0-变为ν的h(谱ν线0-。ν)= hν,频率降低至ν0-ν,形成频率
拉曼发明的拉曼光谱仪
1928~1940年,受到广泛的重视,曾是研究分子结 构的主要手段。这是因为可见光分光技术和照相感 光技术已经发展起来的缘故;
1940~1960年,拉曼光谱的地位一落千丈。主要是 因为拉曼效应太弱(约为入射光强的10-6),并要求 被测样品的体积必须足够大、无色、无尘埃、无荧 光等等。所以到40年代中期,红外技术的进步和商 品化更使拉曼光谱的应用一度衰落;
拉曼光谱分析技术
元
拉曼光谱分析技术
1 拉曼光谱概述 2 拉曼光谱的基本原理 3 激光拉曼光谱仪 4 拉曼光谱技术的应用和发展
1 拉曼光谱概述
1.1 拉曼光谱的发展历程
1928年印度物理学家C.V.拉曼在 实验中发现,当光穿过透明介质 被分子散射的光发生频率变化, 这一现象称为拉曼散射,本人也 因此荣获1930年的诺贝尔物理学 奖。
正负拉曼位移线的跃迁几率是相等 的,但由于反斯托克斯线起源于受激振 动能级,处于这种能级的粒子数很少, 因此反斯托克斯线的强度小,而斯托克 斯线强度较大,在拉曼光谱分析中主要 应用的谱线。
2.3 拉曼位移
Raman位移:Raman散射光与入射光频率
差;
=| 0 – s | 取决于分子振动 能级的改变,因此是
4) 因为激光束的直径在它的聚焦部位通常只有0.22毫米,常规拉曼光谱只需要少量的样品就可以得到。 这是拉曼光谱相对常规红外光谱一个很大的优势。
5) 共振拉曼效应可以用来有选择性地增强大生物分 子某个发色基团的振动,这些发色基团的拉曼光强能 被选择性地增强1000到10000倍。
1.3 几种重要的拉曼光谱分析技术
h(0 - )
Rayleigh散射:
E1 + h0
弹性碰撞;无 能量交换,仅改变 方向; Raman散射:
非弹性碰撞; 方向改变且有能量
E0 + h0 h0
h0 h0
h0 +
E1
V=1
E0
V=0
Rayleigh散射
Raman散射 h
交换;
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态;
E=h(0 - ) E=h(0 + )
h(0 - )
E1 V=1 E0 V=0
h0 h(0 + ) h
Stokes线与反Stokes线
●将负拉曼位移,光子失去能量,频率减
小线,)即。ν0-ν称为Stokes线(斯托克斯
●将正拉曼位移,光子得到能量,频率增
大克,斯即线)ν0+。ν称为反Stokes线(反斯托
光的瑞利散射和拉曼散射
一束频率为ν0的单色光,当它不能被照射的物体
吸收时,大部分光将沿入射光束通过样品,约 1/105~1/106有强度的光被散射到各个方向,并 在与入射方向垂直的方向,可以观察到两种散射。 ●瑞利散射为光与样品分子间的弹性碰撞,光子的 能量或频率不变,只改变了光子运动的方向。 ●拉曼散射为光与样品分子间的非弹性碰撞,光子 的能量或频率以及方向都发生变化。