网络高等教育本科生毕业论文(设计)题目:低压电缆绝缘状态检测方法内容摘要随着低压电缆在电网供电中的越来越广泛的使用,低压电缆的使用数量、长度有了很大的发展,随之故障也增多了。
为了能提前预测低压电缆绝缘发展方向,低压电缆绝缘故障检测方法的研究应运而生,并且得到了很好的发展本文首先简述了低压电缆的研究现状和低压电缆绝缘故障类型及老化原因。
随后,讨论低压电缆绝缘老化及其表现形式。
在文章中,对低压电缆绝缘故障检测方法进行了归纳和总结,给出了各种检测方法的原理,并对各种测试方法的优缺点进行了比较分析,给出了种种测试方法的适用范围,以期为各种低压绝缘故障的检测系统方法选择提供了各种参考方法。
用上述方法通过实验对电缆检测后,达到了预期检测的目的,对电缆的绝缘状态给出了总体的评评判。
关键词:低压电缆;介质损耗;老化;漏导电流目录内容摘要 (I)1 绪论 (1)1.1 课题的背景及意义 (1)1.2 国内外发展现状 (1)1.3 本文主要研究内容 (2)2 电缆故障类型及绝缘老化的原因 (3)2.1 电缆故障的类型 (3)2.1.1 接地故障 (3)2.1.2 短路故障 (3)2.1.3断线故障 (3)2.1.4闪络性故障 (3)2.2 电缆老化原因 (3)2.2.1 电气老化 (4)2.2.2 热老化 (4)2.2.3 机械老化 (4)2.2.4 水老化 (5)3 低压电缆绝缘状态检测技术分析 (6)3.1 低压电缆绝缘电阻的测试方法 (6)3.1.1 测试中电压与时间的选择 (6)3.1.2 低压电缆绝缘电阻的测量 (6)3.2 低压电缆绝缘漏导电流检测方法 (7)3.3 低压电缆绝缘介质损耗检测方法 (8)3.3.1 低压电缆绝缘介质损耗的测量原理 (8)3.3.2 低压电缆绝缘介质损耗的测量方法 (9)3.4 低压电缆绝缘在线运行检测方法 (9)3.4.1 直流叠加法 (9)3.4.2 低频叠加法 (10)3.4.3 交流叠加法 (11)4 测量数据分析与判断 (13)4.1 低压电缆绝缘电阻实验结果的分析与判断 (13)4.2 低压电缆绝缘泄露电流实验结果的分析与判断 (13)4.3 低压电缆绝缘介质损耗实验结果的分析与判断 (13)5 总结 (15)参考文献 (16)1 绪论1.1 课题的背景及意义在生产、生活中电气绝缘引起的事故比率居高不下,特别是随着我国经济的发展,人们生活水平不断的提高,用电量在大幅的增加,同时对用电安全也提出了更高的要求。
针对电缆故障,很有必要研究电缆故障应对措施,以期达到如下目的:一是使电缆可能出现故障点处能够按计划停电得到及时处理,二是:电缆出现故障后,测试人员到达现场能够以最短的时间,准确地探测出故障点,采取有效处理措施后,能够快速恢复线路供电,以保证电网的安全稳定运行。
目前,对低压电缆的检测,我们基本上还采用定期试验维修的方法,这种离线试验方法对出厂产品与将要投入使用的设备进行检测非常有效,但无法对使用中的电缆进行监测。
而且电缆在试验时使用耐压试验等方法,本身就会对其造成损伤,使电缆的老化加快,电缆的绝缘特性受到影响,虽然耐压试验是一种有效发现故障的方法,但还是要寻求不会对试品有损坏的新试验方法。
各种离线和在线检测方法为低压电缆的绝缘状态检测提供了新的思路。
1.2 国内外发展现状20世纪60年代起,国外就开始了关于XLPE (交联聚乙烯)电缆绝缘弱点检测和老化检测技术的研究,时至今日,该项研究仍在不断发展。
日本是较早开展XLPE 电缆绝缘老化检测技术研究的国家之一,但是研发的电缆绝缘检测仪只能发现已经发生绝缘老化的电缆,无法描述被检测电缆的绝缘老化程度,而且该检测仪主要针对的是陆地所使用电缆。
国内天津大学杜伯学采用温差法对XLPE电缆老化进行评估,其研究对象为10KV的陆用电缆;上海交通大学王雅群采用等温松驰电流对XLPE电缆寿命评估,但是受到国内外电缆制造工艺差异的影响,计算所得老化因子与国外学者报道的结果相差普遍较大。
其中检测技术分为非在线式和在线式:非在线式包括反吸收电流、残留电压、电位衰减法、直流泄漏电流、残留电荷、直流电压叠加法等在线式包括直流成分、脉动法,直流电压叠加法等。
目前的应用绝缘监测剩余寿命评估方法都比较偏向于从定性分析的角度切入,在定量分析方面,只能给出一个比较宽泛的范围。
电力电缆试验技术严重滞后于电力电缆制造和应用技术。
国家关于绝缘电力电缆(XLPE)投运后的试验方法、标准和运行规程大多在20世纪70年代颁布,比较陈旧落后,有的甚至是沿用油纸绝缘电力电缆的试验方法。
1996年修编的《电力设备预防性试验规程》中,仅用很少的篇幅提及绝缘电力电缆投运后的预试方法,不具可操作性。
据统计:在1962~1999年间,直流耐压试验合格后投入运行的电缆在短期内发生故障的次数约占电缆运行故障总次数的43.8%。
这一事实再次说明了直流耐压试验不仅不能够及时发现电缆运行缺陷,反而使电力电缆的绝缘损伤较大,缩短电缆运行寿命。
到目前为止,许多国家包括中国在内,已不再采用直流耐压试验作为交联聚乙烯绝缘电力电缆的预防性试验手段[1]。
介质损耗角的测量是判断绝缘故障的最有效的手段之一。
它与材料特性有关,而与材料尺寸、体积无关的物理量,所以用测量介质损耗角来判断高压电气设备的绝缘情况,特别是对绝缘受潮、老化变质等分布性缺陷是卓有成效的。
1.3 本文主要研究内容随着电力事业的迅速发展,对供电可靠性和用电安全性的要求在进一步的提高,电力设备绝缘状况检测技术的发展日益得到重视,新的检测设备和新的检测技术不断在推出。
电线电缆是最常用的电力设备,同时也是出现绝缘故障的概率最高的设备,据不完全统计,电气绝缘不良引起的事故中波及的设备有近一半与电线电缆有关。
在我国,针对高电压等级的电缆绝缘检测技术受到了普遍的重视,但是针对低压配电网的电线电缆绝缘检测技术的研究却进展不大。
本文的提出就是针对上述问题研究的有效补充,以低压电缆的绝缘电阻和漏电电流为主要研究手段,对电缆绝缘状态进行检测,并判断电缆的绝缘状态以及故障的类别。
2 电缆故障类型及绝缘老化的原因2.1 电缆故障的类型电缆故障有许多种,大致分为以下几种:2.1.1 接地故障电缆一芯或多芯对地故障。
其中又可分为低阻接地或高阻接地。
一般接地电阻在20-100欧。
以下为低阻故障,以上为高阻故障。
因使用的电桥和检流计灵敏度不同,对低阻与高阻的划分也往往不一致。
原则上接地电阻较低,能直接用低压电桥进行测量的故障,称为低阻故障。
须要进行烧穿或用高压电桥进行的故障,称为高阻接地。
2.1.2 短路故障电缆两芯或三芯短路,或两芯、三芯短路接地。
其中也可分为低阻短路或高阻短路故障,其划分原则与接地故障相同。
2.1.3断线故障电缆一芯或多芯被故障电流烧断或受机械外力拉断,形成完全断线或不完全断线,其故障点对地的电阻也可分为高阻或低阻故障,一般以IMQ为分界限,小于1M为低阻。
能较准确地测出电缆的电容,用电容量的大小来判断故障点可称为高阻断线故障[2]。
2.1.4闪络性故障这类故障绝大多数在预防性试验中发生,并多出现在电缆中间接头和终端头。
试验时绝缘被击穿,形成间隙性放电,当所加电压达到某一定值时,发生击穿,当电压降至某一值时,绝缘恢复而不发生击穿。
有时在特殊条件下,绝缘击穿后又恢复正常,即使提高试验电压,也不再击穿,这种故障称为封闭性故障。
以上两种现象均属于闪络性故障2.2 电缆老化原因绝缘材料在使用一定的年限以后,绝缘性能都会呈现一定程度的劣化,这被称为“绝缘老化”。
绝缘材料的老化原因是多样的、复杂的,最具代表性的主要有:热老化、机械老化、电压老化等。
绝缘材料老化的表现主要有绝缘电阻下降、介质损耗增大等,对老化了的绝缘材料进行显微观察,可以发现树枝状结构存在。
2.2.1 电气老化电气老化指的是在电场长期作用下,由于电缆制造中的质量缺陷,施工中机械与外力作用伤害,绝缘物中的空隙、裂纹等,造成局部电场不均匀,诱发局部放电,以导体的变异部、空隙、杂质为起点,局部破坏,发展成树枝化,渐渐地导致绝缘破坏。
电老化机理很复杂,它包含因为绝缘击穿产生。
放电引起的一系列物理和化学效应[4]。
固体绝缘材料的绝缘击穿机理主要有以下两种理论:1.达到一定电场时,电子数量急剧增加,使得绝缘材料遭到击穿破坏,由于击穿破坏的主要原因是电子,因而称为“电击穿”。
2.在绝缘体上加上电压后,有微电流通过,由这一电流产生的焦耳热导致材料击穿破坏,这被称为“热击穿”。
2.2.2 热老化热老化指的是绝缘介质负荷电流变化及短路电流引起的热伸缩、材料氧化、热分解等化学变化以及硬度变化、龟裂等物理变化引起的老化和绝缘材料性能降低。
其化学结构在热量的作用下发生变化,使得绝缘性能下降的现象。
热老化的本质是绝缘材料在热量的影响下发生了化学变化,所以热老化也被称为化学老化。
一般情况下,化学反应的速度随着环境温度的升高而加快。
热老化使得绝缘材料的电气和机械性能同时产生劣化,绝缘寿命减少,但是最显著的表现还是材料的伸长率、拉伸强度等机械特性的变化。
例如,XLPE材料被认为当拉伸率从初始的400%~600%降低到100%时寿命终止[3]。
2.2.3 机械老化机械老化是电缆系统在生产、安装、运行过程中受到各种机械应力的作用发生的老化。
这种老化主要是绝缘材料在机械应力作用下产生微观的缺陷,这些微小的缺陷随着时间的流逝和机械应力的持续作用慢慢恶化,形成微小裂缝并逐渐扩大,直至引起局部放电等破坏绝缘的现象,这种现象也被称为“电-机械击穿’。
2.2.4 水老化水浸入电缆后(制造时或施工与运行中接头浸潮等),由于电场的叠效果,在电场不均匀及电场力集中点形成水树枝化。
通常有内导水树枝化、蝴蝶水树枝化和外导水树枝化阵。
橡皮、塑料电缆等浸水后施加电压作长期试验时,与不加电压只浸水的情况相比较绝缘介质特性要低。
这一现象被称为“浸水课电现象”。
对产生“浸水课电现象”的绝缘材料进行显微观察,发现有和电树枝相似的树枝状结构的存在,因为这种树枝结构水有关,并且是在低电场强度、长时间作用下形成的,为与电树枝区别,称之为水树枝。
水树枝在充满水的状态下看起来是白色的,但是干燥后就不易观察到。
水树枝多见结晶性材料如聚乙烯和交联聚乙烯,而在无定型材料的PVC、丁基橡胶等聚合物中少发现。
此外,水树枝在直流电压的作用下较难产生,但是在交流电压作用下较易产生,频电压也能促使水树枝的产生。
总之,树枝状结构是绝缘老化、劣化后最常观察到的现象,它们的产生和生长是引起绝缘老化、劣化的最基本、直接的因素。
研究各种树枝产生、生长的机理和它们对绝缘的影响对于寻找防止绝缘材料老化和检测绝缘老化程度的方法是非常有意义的。
3 低压电缆绝缘状态检测技术分析3.1 低压电缆绝缘电阻的测试方法3.1.1 测试中电压与时间的选择(1)测试电压:测试绝缘电阻时所施加的直流电压不能太高,否则会导致绝缘内部放电,既影响测试正确性又易造成绝缘损坏;也不能太低,以致影响测试的灵敏度和准确性。