当前位置:文档之家› 深度解析-数学归纳法

深度解析-数学归纳法

数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( × )(2)所有与正整数有关的数学命题都必须用数学归纳法证明.( × )(3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )1.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a (a ≠1,n ∈N *),在验证n =1时,等式左边的项是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3答案 C解析 当n =1时,n +1=2,∴左边=1+a 1+a 2=1+a +a 2.2.(2016·黄山模拟)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+ (12))时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( ) A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立答案 B解析 因为n 为正偶数,n =k 时等式成立,即n 为第k 个偶数时命题成立,所以需假设n 为下一个偶数,即n =k +2时等式成立.3.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( ) A .1B .2C .3D .0 答案 C解析 凸n 边形边数最小时是三角形,故第一步检验n =3.4.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.5.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=________,a 3=________,a 4=________,猜想a n =________.答案 3 4 5 n +1题型一 用数学归纳法证明等式例1 设f (n )=1+12+13+ (1)(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).证明 ①当n =2时,左边=f (1)=1,右边=2(1+12-1)=1, 左边=右边,等式成立.②假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k=(k +1)[f (k +1)-1k +1]-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],∴当n =k +1时结论成立.由①②可知当n ∈N *时,f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).思维升华 用数学归纳法证明恒等式应注意(1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n (n +1)2(2n +1)(n ∈N *). 证明 ①当n =1时,左边=121×3=13, 右边=1×(1+1)2×(2×1+1)=13, 左边=右边,等式成立.②假设n =k (k ≥1,k ∈N *)时,等式成立.即121×3+223×5+…+k 2(2k -1)(2k +1)=k (k +1)2(2k +1),当n =k +1时,左边=121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)(2k +3)+2(k +1)22(2k +1)(2k +3)=(k +1)(2k 2+5k +2)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3), 右边=(k +1)(k +1+1)2[2(k +1)+1]=(k +1)(k +2)2(2k +3), 左边=右边,等式成立.即对所有n ∈N *,原式都成立.题型二 用数学归纳法证明不等式例2 (2016·烟台模拟)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立. (1)解 由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列.又a 1=b +r ,a 2=b (b -1),所以a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (2)证明 由(1)及b =2知a n =2n -1.因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2, 左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k >k +1, 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2, 即证2k +32≥(k +1)(k +2), 由基本不等式得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立, 故2k +32k +1≥k +2成立, 所以当n =k +1时,结论成立.由①②可知,当n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 思维升华 数学归纳法证明不等式的适用范围及关键(1)适用范围:当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.(2)关键:由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.若函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴的交点的横坐标,试运用数学归纳法证明:2≤x n <x n +1<3. 证明 ①当n =1时,x 1=2,f (x 1)=-3,Q 1(2,-3).所以直线PQ 1的方程为y =4x -11,令y =0,得x 2=114,因此2≤x 1<x 2<3, 即n =1时结论成立.②假设当n =k 时,结论成立,即2≤x k <x k +1<3.当n =k +1时,直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4·(x -4).又f (x k +1)=x 2k +1-2x k +1-3,代入上式,令y =0,得x k +2=3+4x k +12+x k +1=4-52+x k +1, 由归纳假设,2<x k +1<3,x k +2=4-52+x k +1<4-52+3=3; x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0, 即x k +1<x k +2,所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立.由①②知对任意的正整数n,2≤x n <x n +1<3.题型三 归纳—猜想—证明命题点1 与函数有关的证明问题例3 (2017·绵阳质检)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.猜想数列{x 2n }的单调性,并证明你的结论.解 由x 1=12及x n +1=11+x n, 得x 2=23,x 4=58,x 6=1321, 由x 2>x 4>x 6,猜想:数列{x 2n }是递减数列.下面用数学归纳法证明:①当n =1时,已证命题成立.②假设当n =k 时命题成立,即x 2k >x 2k +2,易知x k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3)=11+x 2k +2-11+x 2k (1+x 2k +1)(1+x 2k +3)=x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0, 即x 2(k +1)>x 2(k +1)+2.所以当n =k +1时命题也成立.结合①②知,对于任何n ∈N *命题成立.命题点2与数列有关的证明问题例4在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*,λ>0).(1)求a2,a3,a4;(2)猜想{a n }的通项公式,并加以证明.解(1)a2=2λ+λ2+2(2-λ)=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.(2)由(1)可猜想数列通项公式为:a n=(n-1)λn+2n.下面用数学归纳法证明:①当n=1,2,3,4时,等式显然成立,②假设当n=k(k≥4,k∈N*)时等式成立,即a k=(k-1)λk+2k,那么当n=k+1时,a k+1=λa k+λk+1+(2-λ)2k=λ(k-1)λk+λ2k+λk+1+2k+1-λ2k=(k-1)λk+1+λk+1+2k+1=[(k+1)-1]λk+1+2k+1,所以当n=k+1时,a k+1=[(k+1)-1]λk+1+2k+1,猜想成立,由①②知数列的通项公式为a n=(n-1)λn+2n(n∈N*,λ>0).命题点3存在性问题的证明例5设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解(1)方法一a2=2,a3=2+1.再由题设条件知(a n+1-1)2-(a n-1)2=1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想a n=n-1+1.下面用数学归纳法证明上式:当n=1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1 =(k +1)-1+1.所以当n =k +1时结论成立.所以a n =n -1+1(n ∈N *).(2)方法一 设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明加强命题:a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<14<a 3<1,结论成立. 假设n =k 时结论成立,即a 2k <c <a 2k +1<1.易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2. 再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1.因此a 2(k +1)<c <a 2(k +1)+1<1.这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14. 方法二 设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *).①当n =1时,结论显然成立.假设n =k 时结论成立,即0≤a k ≤1.易知f (x )在(-∞,1]上为减函数,从而0=f (1)≤f (a k )≤f (0)=2-1<1,即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n <a 2n +1(n ∈N *).②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,有a 2<a 3,即n =1时②成立.假设n =k 时,结论成立,即a 2k <a 2k +1.由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立,所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14.③ 又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2,所以a 2n +1>a 22n +1-2a 2n +1+2-1.解得a 2n +1>14.④ 综上,由②③④知存在c =14使得a 2n <c <a 2n +1对一切n ∈N *成立. 思维升华 (1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.(2015·江苏)已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.解 (1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6.所以f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧ n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5.(t ∈N *).下面用数学归纳法证明: ①当n =6时,f (6)=6+2+62+63=13,结论成立; ②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论: (ⅰ)若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3 =(k +1)+2+k +12+k +13,结论成立; (ⅱ)若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1 =(k +1)+2+(k +1)-12+(k +1)-13,结论成立; (ⅲ)若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2 =(k +1)+2+k +12+(k +1)-23,结论成立; (ⅳ)若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2 =(k +1)+2+(k +1)-12+k +13,结论成立; (ⅴ)若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k 3+2=(k +1)+2+k +12+(k +1)-13,结论成立; (ⅵ)若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1 =(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.9.归纳—猜想—证明问题典例 (12分)数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)证明(1)中的猜想.思维点拨 (1)由S 1=a 1算出a 1;由a n =S n -S n -1算出a 2,a 3,a 4,观察所得数值的特征猜出通项公式.(2)用数学归纳法证明.规范解答(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1;当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32; 当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74; 当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4,∴a 4=158.[2分] 由此猜想a n =2n -12n -1(n ∈N *).[4分] (2)证明 ①当n =1时,a 1=1,结论成立.[5分]②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1, 那么n =k +1时,[7分]a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k=2+a k -a k +1,∴2a k +1=2+a k .[9分]∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k. ∴当n =k +1时,结论成立.[11分]由①②知猜想a n =2n -12n -1(n ∈N *)成立.[12分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论;.第二步:验证一般结论对第一个值n 0(n 0∈N *)成立;第三步:假设n =k (k ≥n 0,k ∈N *)时结论成立,证明当n =k +1时结论也成立;第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N *成立.1.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立答案 B解析 n =2时,n =k ,n =k +2成立,n 为2,4,6,…,故n 为所有正偶数.2.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是( )A .假设n =k (k ∈N *),证明n =k +1时命题成立B .假设n =k (k 是正奇数),证明n =k +1时命题成立C .假设n =2k +1(k ∈N *),证明n =k +1时命题成立D .假设n =k (k 是正奇数),证明n =k +2时命题成立答案 D解析 相邻两个正奇数相差2,故D 选项正确.3.(2017·淄博质检)设f (x )是定义在正整数集上的函数,且f (x )满足:当f (k )≥k +1成立时,总能推出f (k +1)≥k +2成立,那么下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1成立C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立答案 D解析 当f (k )≥k +1成立时,总能推出f (k +1)≥k +2成立,说明如果当k =n 时,f (n )≥n +1成立,那么当k =n +1时,f (n +1)≥n +2也成立,所以如果当k =4时,f (4)≥5成立,那么当k ≥4时,f (k )≥k +1也成立.4.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1(n -1)(n +1)B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)答案 C解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5. 当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7. 当n =4时,13+115+135+a 4=(4×7)a 4,a 4=17×9. 故猜想a n =1(2n -1)(2n +1). 5.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1 答案 B解析 当n =k (k ∈N *)时,左式为(k +1)(k +2)·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).6.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =_________________________________________________.答案 n n +1解析 由(S 1-1)2=S 1·S 1,得S 1=12, 由(S 2-1)2=(S 2-S 1)S 2,得S 2=23, 依次得S 3=34,猜想S n =n n +1. 7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n (2n +1)3时,第二步从“k ”到“k +1”应添加的项为________. 答案 (k +1)2+k 2解析 由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N *).8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).答案 5 12(n +1)(n -2) 解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=12(n +1)(n -2). 9.(2016·北京东城区质检)在数列{b n }中,b 1=2,b n +1=3b n +42b n +3(n ∈N *).求b 2,b 3,试判定b n 与2的大小,并加以证明.解 由b 1=2,b n +1=3b n +42b n +3, 得b 2=3×2+42×2+3=107,b 3=5841. 经比较有b 1>2,b 2>2,b 3> 2.猜想b n >2(n ∈N *).下面利用数学归纳法证明.①当n =1时,∵b 1=2,∴ 2 <b 1.②假设当n =k (k ≥1,k ∈N *)时,结论成立, 即 2 <b k ,∴b k - 2 >0.当n =k +1时,b k +1-2=3b k +42b k +3- 2 =(3-22)b k +(4-32)2b k +3 =(3-22)(b k -2)2b k +3>0. ∴b k +1> 2,也就是说,当n =k +1时,结论也成立.根据①②知b n >2(n ∈N *).10.数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *).(1)证明:{x n }是递减数列的充要条件是c <0;(2)若0<c ≤14,证明:数列{x n }是递增数列. 证明 (1)充分性:若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,所以数列{x n }是递减数列.必要性:若{x n }是递减数列,则x 2<x 1,且x 1=0.又x 2=-x 21+x 1+c =c ,所以c <0.故{x n }是递减数列的充要条件是c <0.(2)若0<c ≤14,要证{x n }是递增数列. 即x n +1>x n ,即x x +1-x n =-x 2n +c >0,也就是证明x n < c .下面用数学归纳法证明当0<c ≤14时,x n < c 对任意n ≥1,n ∈N *都成立. ①当n =1时,x 1=0< c ≤12,结论成立. ②假设当n =k (k ∈N *)时结论成立,即x k < c .因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增, 所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立.故x n < c 对任意n ≥1,n ∈N *都成立.因此,x n +1=x n -x 2n +c >x n ,即{x n}是递增数列. 11.已知函数f 0(x )=sin x x(x >0),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求2f 1(π2)+π2f 2(π2)的值; (2)证明:对任意的n ∈N *,等式|nf n -1(π4)+π4f n (π4)|=22都成立. (1)解 由已知,得f 1(x )=f ′0(x )=(sin x x )′=cos x x -sin x x2, 于是f 2(x )=f ′1(x )=(cos x x )′-(sin x x2)′ =-sin x x -2cos x x 2+2sin x x3, 所以f 1(π2)=-4π2,f 2(π2)=-2π+16π3, 故2f 1(π2)+π2f 2(π2)=-1. (2)证明 由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x ,即f 0(x )+xf 1(x )=cos x =sin(x +π2),类似可得 2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin(x +3π2), 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin(x +n π2)对所有的x ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时,等式成立,即kf k -1(x )+xf k (x )=sin(x +k π2). 因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),[sin(x +k π2)]′=cos(x +k π2)·(x +k π2)′ =sin[x +(k +1)π2], 所以(k +1)f k (x )+xf k +1(x )=sin[x +(k +1)π2]. 因此当n =k +1时,等式也成立.综合①②可知等式nf n -1(x )+xf n (x )=sin(x +n π2)对所有的n ∈N *都成立. 令x =π4,可得nf n -1(π4)+π4f n (π4) =sin(π4+n π2)(n ∈N *), 所以|nf n -1(π4)+π4f n (π4)|=22(n ∈N *).*12.设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式;(2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.解 由题设得,g (x )=x 1+x(x ≥0). (1)由已知,g 1(x )=x 1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x ,g 3(x )=x 1+3x ,…,可猜想g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x,结论成立. ②假设n =k 时结论成立,即g k (x )=x 1+kx. 那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x ,即结论成立. 由①②可知,结论对n ∈N *成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x恒成立. 设φ(x )=ln(1+x )-ax 1+x(x ≥0), 则φ′(x )=11+x -a (1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增.又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax 1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )≤0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,∴ln(1+x )≥ax 1+x不恒成立, 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1,n -f (n )=n -ln(n +1), 比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N *,则1n +1<ln n +1n . 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N *成立.。

相关主题