第三章 行波法与积分变换法分离变量法,它是求解有限区域内定解问题常用的一种方法。
行波法,是一种针对无界域的一维波动方程的求解方法。
积分变换法,一个无界域上不受方程类型限制的方法。
§3.1 一维波动方程的达朗贝尔(D ’alembert )公式一、达朗贝尔公式考察如下Cauchy 问题:.- ),(u ),(u 0, ,- ,0t 022222+∞<<∞==>+∞<<∞∂∂=∂∂==x x x t x xu a t u t t ψϕ (1) 作如下代换;⎩⎨⎧-=+=at x at x ηξ,(2) 利用复合函数求导法则可得22222222))((,ηηξξηξηξηξηηξξ∂∂+∂∂∂+∂∂=∂∂+∂∂∂∂+∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u u x u uu x u x u x u同理可得),2(22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u a t u 代入(1)可得ηξ∂∂∂u2=0。
先对η求积分,再对ξ求积分,可得),(t x u d 的一般形式)()()()(),(at x G at x F G F t x u -++=+=ηξ这里G F ,为二阶连续可微的函数。
再由初始条件可知).()()(),()()(''x x aG x aF x x G x F ψϕ=-=+ (3)由(3)第二式积分可得C dt t ax G x F x+=-⎰0)(1)()(ψ, 利用(3)第一式可得.2)(21)(21)(,2)(21)(21)(00Cdt t a x x G Cdt t a x x F x x --=++=⎰⎰ψϕψϕ所以,我们有⎰+-+-++=atx atx dt t a at x at x t x u )(21)]()([21),(ψϕϕ(4) 此式称为无限弦长自由振动的达朗贝尔公式。
二、特征方程、特征线及其应用 考虑一般的二阶偏微分方程02=+++++Fu Eu Du Cu Bu Au y x yy xy xx称下常微分方程为其特征方程0)(2)(22=+-dx C Bdxdy dy A 。
由前面讨论知道,直线常数=±at x 为波动方程对应特征方程的积分曲线,称为特征线。
已知,左行波)(at x F +在特征线1C at x =+上取值为常数值)(1C F ,右行波)(at x G -在特征线2C at x =-上取值为常数值)(2C G ,且这两个值随着特征线的移动而变化,实际上,波是沿着特征线方向传播的。
称变换(2)为特征变换,因此行波法又称特征线法。
注:此方法可以推广的其他类型的问题。
三、公式的物理意义 由)()(),(at x G at x F t x u -++=其中)(at x F +表示一个沿x 轴负方向传播的行波,)(at x G -表示一个沿x 轴正方向传播的行波。
达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个方向传播出去,其传播速度为a 。
因此此法称为行波法。
四、依赖区间、决定区域、影响区域由方程的解(4)可以看出,解在(x,t )点的数值由x 轴上区间[x-at,x+at]内的初始条件的值唯一确定,而与其他点上的初始条件的值无关。
区间[x-at,x+at]称为点(x,t )的依赖区间对初始直线t=0上的一个区间[x1,x2],过x1作直线x=x1+at,过x2作直线x=x2-at,它们与[x1,x2]合成一个三角形区域,如图则此三角形中任一点(x,t)的依赖区间都落在[x1,x2]中,因此解在此三角形区域中的数值完全由区间[x1,x2]上的初始条件决定,与[x1,x2]之外的初始条件值无关。
故称此三角形区域为[x1,x2]的决定区域。
因此,在区间[x1,x2]上给定初始条件,就能在其决定区域中决定初值问题的解。
另一方面,过点x1,x2分别作直线x=x1-at,x=x2+at, 如图() 则经过时间t 后,受到区间[x1,x2]上初始扰动影响的区域为0,21>+≤≤-t at x x at x而此区域之外的波动不受[x1,x2]上初始扰动的影响,称上不等式确定的区域为[x1,x2]的影响区域。
注:通过例子说明影响区域,比如初始条件在区间[x1,x2]内有扰动时,讨论一下解在那些区域有影响,哪些没影响。
例 求解柯西问题:⎪⎩⎪⎨⎧+∞≤≤-∞==+∞≤≤-∞>=-+==.,0,3,,0,03202x u x u x y u u u y y y yy xy xx解:其特征方程为0)(32)(22=--dx dxdy dy由此可得特征线方程为dy x cy x =+=-3因此作变换⎩⎨⎧+=-=yx y x μξ,3 从而可得ηξ∂∂∂u2=0 从而有)()3(),(y x G y x F y x u ++-=由初始条件可得)()3(3)()3(''2=+-=+x G x F x x G x F所以有C x G x F =-)(3)3(,从而可得Cxx G Cx x F +=-=43)(49)3(22故而可知223)()3(),(y x y x G y x F y x u +=++-=。
补充:Fourier 变换一、定义设)(x f 为定义在),(+∞-∞,若积分⎰+∞∞--=dx e x f s F isx )()(存在,称)(s F 为)(x f 的Fourier 变换。
⎰+∞∞-=ds e s F x f isx )(21)(π称为)(s F 的逆Fourier变换。
记⎰⎰∞+∞--+∞∞--====dse s F s F F xf dxe xf s F x f F isxisx )(21)]([)()()()]([1π二、性质 1.线性性质若已知),()]([),()]([2211s F x f F s F x f F == 则有).()()]()([2121s bF s aF x bf x af F +=+ 2.对称性若)()]([s F x f F =,则)(2)]([s f x F F -=π。
3.相似性若)()]([s F x f F =,则)(1)]([as F a ax f F = 4.延迟性若)()]([s F x f F =,则若0)()]([0isx e s F x x f F -=- 5.频移性若)()]([s F x f F =,则)(])([00s s F e x f F x is -=,)(])([00s s F e x f F x is +=-。
6.微分性若)()]([s F x f F =,则)()](['s isF x f F =,特别)()()]([)(s F is x f F n n =。
7.积分性若)()]([s F x f F =,则)(1])([s F isdx x f F =⎰。
8.卷积性若),()]([),()]([2211s F x f F s F x f F == 则)()()](*)([2121s F s F x f x f F =。
§3.3 积分变换法举例例1、 无界杆上的热传导问题设有一根无限长的杆,杆上具有强度为),(t x F 的热源,杆的初温为)(x ϕ,求t>0时杆上温度分别情况。
解:由题意可知上问题可归结为求下定解问题:.- ),(u 0, ,- ),,(0222+∞<<∞=>+∞<<∞+∂∂=∂∂=x x t x t x f xu a t u t ϕ 很容易看出,上定解问题为无界域上的求解问题,直接用分离变量法比较复杂。
下面我们用Fourier 变换法求解。
用),(),,(t s G t s U 表示),(),,(t x f t x u 的Fourier 变换,关于x 对上方程作Fourier 变换可得G U s a dtt s dU +-=22),( 此为一阶ODE ,在由原问题的初始条件作Fourier 变换可得上常微分方程的定解条件)(0s U t Φ==从而可得τττd es G es U t s a ts a )(2222),()(---⎰+Φ=再利用Fourier 逆变换可得原问题的解。
由Fourier 变换表知ta x t s a eta e F 22224121][---=π再由Fourier 变换的卷积性质知⎰⎰⎰∞+∞----∞+∞----+=tt a x ta x d et f d a d et at x u 0)(4)(4)(2222),(21)(21),(ξττξτπξξϕπτξξ。
总结:积分变换法解定解问题的一般过程1.根据自变量的变化范围及定解条件,选取适当的积分变换公式,通过对方程进行积分变换把问题简化; 2.对所得简化问题求解;3.运用逆变换,求得原问题的解。
例2.一条无限长的杆,端点温度情况已知,初温为0C 0 ,求杆上温度分布规律。
解:由题意可知,等价于求下定解问题),(u .0,0u 0, ,0 ,00222t f x t x xu a t u x t =+∞<<=>+∞<<∂∂=∂∂== 此问题不能用Fourier 变换法(?)。
要用Laplace 变换法求解。
若关于x 作Laplace 变换,则需要有u 关于x 的一阶偏导的边界值,但方程没有给出,所以只能作关于t 的Laplace 变换。
记)}({)()},,({),(t f L p F t x u L p x U ==,则作Laplace 变换可得)(0222p F U dx Ud apU x ==-从而可得xapxa p BeAeU +=-由定解条件知,当∞→x 时,U 有界,从而可得B=0.又)(0p F U x =-,故 xa p ep F U -=)( 为求原问题的解,下用Laplace 逆变换,查表可知)0(1)}2({2)(2≥==-+∞-⎰k e p tkerfc L dte y erfc pkyt π令axk =,则知 ⎰⎰∞+---+∞-===ta xy pax yt dye ta x erfc epL dte y erfc 222412)2(}1{2)(ππ再由Laplace 变换的微分性质知ta x ta xy pax pax et a x dy e dt d e ppL eL 222242/341122[}1{}{-∞+-----===⎰ππ最后,由Laplace 变换卷积性知⎰---=tt a x d et f a x t x u 0)(42/322)(1)(2),(τττπτ。